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Abstract 

Omni-directional images are widely used in image-based walkthrough 
applications, in which camera pose recovery is one of the initial and 
important processes. Existing methods may recover camera pose of omni-
directional images from lines. However, it may not work well when there is 
insufficient scene structure in the images. In addition, existing methods 
involve non-linear optimization and iterative algorithms, which may lead to 
the convergence problem and high computational cost.     

In this paper, we propose an automatic camera pose recovery method for 
a network of omni-directional images. Our method only requires 2D point 
correspondences as input. We divide the problem into the orientation and 
position components, and determine them separately. The relative rotations 
between adjacent views are aggregated to estimate the global orientations. 
An algorithm is developed to adjust the rotations for avoiding global 
inconsistency and error accumulation. For position recovery, we have 
derived a linear global formulation for establishing correspondences and 
positions among multiple views. Globally optimized positions can be 
obtained simply by solving the formulation. We demonstrate the performance 
of our method with some experiments. 

 

1.  Introduction 
Omni-directional images, such as panorama, are increasingly used for image-based 
walkthrough applications and 3D reconstruction [1, 14, 17]. They require camera pose 
estimates for arbitrary view synthesis and guided matching. Thus, camera pose recovery 
becomes the prerequisite for developing such image-based applications. Although the 
problem of camera pose recovery for planar images has been extensively studied, the 
methods developed cannot simply be applied to omni-directional images. It is because 
the linear projective relationship between the image space of planar images, such as 
fundamental matrix [4] and trifocal tensor [13], does not exist between the image spaces 
of omni-directional images. Without the linear projective relationship, most camera 
pose recovery methods [8, 12] that work on the projective space can no longer be used 
here. Thus, we need to develop new methods for omni-directional images.      

Existing methods to recover camera parameters of omni-directional image can be 
generally classified into three types: onsite measurement, interactive recovery and 
automatic recovery. Onsite measurement [3, 17] may be the most direct method to 
obtain the camera pose during image capturing. However it requires expensive 
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equipment, such as a laser range finder. The accuracy of the acquired orientations and 
positions highly depends on the sensitivity of the equipment. It is usually not precise 
enough to bring the images into pixel-accurate registration.  

To avoid expensive equipment for onsite measurement, camera pose may be 
estimated from images directly. [14] proposes a method for camera pose and structure 
recovery by manually specifying the planes, lines and points with known directions or 
relationship on omni-directional images. However, manual specification becomes 
impractical when the number of images is large. Human bias may also be introduced.   

In [2], a scalable camera pose estimation method for omni-directional images with 
automatic edge detection and vanishing points (VPs) estimation is proposed. However, 
as the estimation relies on parallel lines in order to estimate VPs in every image, it may 
not work well when the scene lacks regular structures. Moreover, their method involves 
iterative algorithm and non-linear optimization. It may lead to convergence problem 
and expensive computational cost.  

In this paper, we introduce a novel camera pose recovery approach for omni-
directional images. Traditionally, camera calibration for planar images simultaneously 
estimates both extrinsic and intrinsic parameters of the camera. However, the strong 
coupling existed between the two sets of parameters cause much error in the estimated 
focal length. We approach the problem by first recovering the intrinsic parameters 
followed by the extrinsic parameters. The extrinsic parameter (6DOFs) recovery 
process is further decoupled into rotational registration (3DOFs) and position recovery 
(3DOFs). It is because omni-directional images inherit the advantage of decoupling the 
zero baseline problem from the wide baseline problem. Hence, the intrinsic parameters 
can be recovered independent of the extrinsic parameters. As such, the intrinsic 
parameters can be obtained more easily and accurately [15, 16]. The extrinsic 
parameters can also be solved more easily with point correspondences and linear 
algorithms.  

However, the major drawback of this decoupling approach is that the error from one 
recovery stage may accumulate to the next. We will deal with the problem by applying 
the global consistency checking to minimize the error on each stage of the processes. 
The main contributions of this paper are as follows: 
• Correlation establishment: Instead of correlating omni-directional images with 

corresponding planes and VPs, we transform image space points and establish linear 
relationship between the transformed domains. With this method, only several point 
correspondences are sufficient to establish the mapping function between two views. 

• Rotational registration: The estimated mapping function provides only relative 
rotations and directions between two omni-directional images. To achieve global 
rotational registration, we aggregate a set of relative rotations into global 
orientations with the same Euclidean wireframe. Meanwhile, we have developed an 
orientation adjustment algorithm to ensure global consistency.    

• Position recovery: Existing methods for position recovery requires many computer 
vision and statistical techniques, such as Hough transform, Markov chain Monte 
Carlo and expectation maximization, complicating the implementation of these 
methods. We have derived the global formulation and correlate the correspondences, 
disparity and positions among multiple views. By solving the formulated matrix, the 
positions of the views can be obtained easily. Our method allows camera positions 
to be recovered from correspondences alone. It is simple to implement. Iterative 
algorithms in existing methods are also avoided. It not only highly reduces the 
computational cost, but also prevents the convergence problems.  



 

The rest of this paper is organized as follows. Section 2 describes our camera pose 
recovery method in detail. Section 3 presents some experimental results. Section 4 
briefly concludes the paper. 
 

2.  Camera Pose Recovery 
2.1  Preliminary Process  
Without using specific equipment, groups of planar images are first taken at different 
optical centres (nodes). Images with a common node are then stitched together to form 
an omni-directional (panoramic) image. During the stitching process, an important 
intrinsic parameter, focal length, is obtained. More accurate intrinsic parameters can be 
derived with the method in [16]. Refer to Figure 1. After we have obtained a panorama 
for each node, we recover a consistent set of camera parameters for the panoramas. The 
nodes are triangulated with Delanuay triangulation [5] and adjacencies between nodes 
are established. To save computational cost, we only match point correspondences 
between each pair of adjacent images. Triangles are formed with three nodes, which 
constitute a self-loop for consistent checking.  

Feature points are automatically extracted with the Harris operator [6] and matched 
for each adjacent image pair with Zero Normalized Cross Correlation (ZNCC) [7]. The 
correspondences obtained serve as the input for the camera pose recovery process.  

As shown in Figure 2, our method can be divided into three modules: image space 
transform, rotational registration, and position recovery. Details of each module will be 
discussed next.        

        

2.2  Image Space Transform 
As the mapping between the Euclidean space and the image space of an omni-
directional image is non-linear, the mapping between the image spaces of an image pair 
is also non-linear. This means that we cannot directly formulate the point 
correspondences into a system of linear equations to solve for the mapping function 
between an image pair.  

For the camera with a single mirror providing a single viewpoint, i.e., central 
panoramic catadioptric camera, [11] suggests a non-linear fundamental constraint on 
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the corresponding points in two catadioptric cameras. However, for the more 
commonly used mosaics based panorama, e.g., QTVR, they assume that he images do 
not provide a single viewpoint and the epipolar geometry has not been derived. In 
practice, it is a good approximation to assume mosaics based panorama as a cylindrical 
projection with a single viewpoint [9, 14], if all objects in the scene are relatively far 
from the tripod’s rotational centre. Based on this assumption, the relationship between 
image space points can be established as follows. We first transform the image space 
points to unit vectors on a Gaussian sphere, S2. Hence, a transformation gj for view j is 
applied to image point p=[u,v]T to obtain the projective ray d=[s,t,r]T, i.e., gj(p)=d. 
With this transformation, we may establish the linear mapping Ekj between views j and 
k as follows:  

gk(p)TEkjgj(p) = 0                      (1) 
where Ekj is a 3x3 essential matrix, with five DOFs: three for relative rotation and two 
for relative direction. A different transformation g would be adopted for a different kind 
of omni-directional images. For example, g for panoramic images would be defined as: 
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where f is the focal length, h is the image height and k is the skew factor. 
 
2.3  Rotational Registration 
2.3.1  Essential Matrix Estimation 
After transforming the image space points to rays, we can estimate E for every adjacent 
image pair. Denoted by e, the 9-vector makes up the entries of E in row-major order. 
Let di

j = [si
j, ti

j, ri
j]T be the projective ray at view j of the ith correspondence. We can 

obtain a system of linear equations from a set of correspondences in the form of:   
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By enforcing the constraint that Det(E) = 0, we may use seven points to solve for e. 

We also impose the condition that the two singular values of the essential matrix should 
be equal. The resulting E is the closest solution in Frobenius norm. 

We use the Random Sample Consensus (RANSAC) algorithm to estimate E 
robustly, and determine the number of required samples adaptively by: 

N = log (1 - ρ) / log (1 - ∋s) (4) 
where ρ is the probability of getting at least one sample without outlier, ∋ is the inlier 
percentage, and s is the minimum number of correspondences in each sample. The E 
with the most inliers is chosen. 
 
2.3.2  Relative Rotation Extraction and Decomposition 
The essential matrix E provides relative orientation and translation direction between 
two adjacent images. In order to obtain the orientations in the world coordinate system, 
we extract the rotational matrix Rkj from every Ekj by Singular Value Decomposition 
(SVD). There are two possible solutions for Rkj and two for translations. The correct 
solution can be determined from several correspondences as suggested in [18]. Rkj is 
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then further decomposed into 3 givens rotations about the three coordinate axes, i.e., 
Rkj=Rx

kjRy
kjRz

kj, by RQ factorization.  

2.3.3  Global Orientation Recovery and Adjustment 
As the set of Ekj are estimated independently, the initial set of Rkj may not be globally 
consistent. The inconsistency in Rkj may also be propagated and accumulated as the 
path gets long. To deal with this problem, we propose an algorithm to adjust the 
rotational matrices. With the adjustment, a set of globally consistent R can be obtained 
and the inconsistency propagation can be minimized.  

Let θkj be the relative rotational angle from view j to view k. The residual ε of a self-
loop L of three views j, k, l (i.e., Rkj

 → Rlk → Rjl ) is defined as: 
ε = θkj + θlk + θjl     (5) 

In a consistent self-loop, ε is equal to zero as shown in Figure 3(a). However, due to the 
independent estimation of R, ε is often not equal to zero as shown in Figure 3(b). To 
ensure consistency, we have to adjust θ  by ∆θ, such that  

0 = θkj’ + θlk’ + θjl’  (6) 
θkj’ = θkj + ∆θkj.       (7) 

Initially, all the adjacencies are marked as “non-adjusted” and adjusted one by one. 
We compute ε for each self-loop L and choose the one Lcurr with the smallest ε. For 
every adjacency in Lcurr, ∆θ kj is determined as: 
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ii
kj qn 1
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where n ∈{1,2} is the number of self-loops containing the adjacency, qi is the number 
of non-adjusted adjacencies in the adjacent self-loop Li, and κi ∈{1,-1} indicates the 
direction of edge in Li. Then, θkj is adjusted by Equation (7) and marked as “adjusted”. 
ε’s of the adjacent self-loops Lneig of Lcurr are computed. The one with the smallest ε is 
selected and the adjustment process is repeated until all the adjacencies are updated.   

The following pseudo-code shows the orientation adjustment. 

     εmin = ∞ 
     for i = 1 to M do 
          compute εi for Li by Equation (5) 
          if εi < εmin then Lcurr = Li 
     endfor 
     j = M                                          
     repeat 
          compute ∆θ for non-adjusted edges in Lcurr by Equation (8) 
          update ε, q for all Lneig       
          j = j -1  

Figure 3. (a) Global consistent orientations, and (b) global inconsistent orientations. 
(a) (b) 
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          Lcurr = Lneig with minimum ε 
     until j = 0 

 

 

2.4  Position Recovery 
The translation of a view includes direction as well as magnitude. Since only relative 
translation direction between two views can be inferred from Ekj, we cannot simply 
obtain the global position of a view from a set of essential matrices. Here, we 
investigate the linear relationship among the correspondences, generalized disparity 
[10] and global translation among multiple views. Upon formulating these entities, we 
may obtain a set of globally optimized positions by solving the system of linear 
equations.  

 
2.4.1  Orientation Transform 
Given a 3D point, X ∈ℜ3 in the Euclidean space, we can define a mapping function 
from X to a projective ray d as:  M: X → d. On the other hand, for a given generalized 
disparity, λ = δ(d), we can define another mapping function from d to X as: N: (d, λ) 
→ X. With a 3x3 rotational matrix R and the camera centre C of a view, the two 
mapping functions can be defined as follows: 

M : RCRXd −=&    or    dT ⋅ (RX – RC) = 0 
N : X = C + λRTd 

We can eliminate the rotational matrix R by an orientation transform H: d’ = RTd. After 
the transformation, the two functions can be simplified as: 

M : d’T ⋅ (X – C) = 0    
N : X = C + λd’ 

 
2.4.2  Global Translation Formulation 
After the orientation transform, we correlate the two mapping functions for different 
views and derive the formulation among multiple views.  

Referring to Figure 4, Xi can be inferred from a covariant view j by the function N 
as: 

Xi = Cj + λj
idj

i                                                   (9) 
where dj

i denotes the projective ray after the orientation transform at view j for Xi. λj
i is 

the corresponding generalized disparity. Meanwhile, Xi can also be projected to a 
contravariant view k by the function M as: 

(dk
i)T ⋅ (Xi – Ck) = 0                          (10) 

By substituting (9) into (10), Xi can be eliminated: 
(dk

i)T ⋅ (Cj – Ck + λj
idj

i) = 0                       (11) 
Let dj

i = [sj
i, tj

i, rj
i] T and Cj = [C1j, C2j, C3j]. By eliminating a redundant equation, the 

correspondences can be formulated with (11) as:  
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By extending the formulation for multiple covariant and contravariant views, we may 
obtain the matrix of multiple views for global optimization. 

In order to tolerate mismatches and achieve robust estimation, we again employ the 
RANSAC method to select a sub-set of samples for determining the global positions. 
The solution with the most inlier σ is selected. The number of samples N required is 
determined adaptively by Equation (4). Let C be the right null space vector in Equation 
(12), the pseudo-code for position recovery to get the best solution Cbest is as follows: 

 
     for j = 1 to J 
          for i = 1 to I 
               orientation transform of dj

i 
     n = σmax = 0 
     repeat  
          select sample of corresponding dj

i from every view 
          compute C for the equations as in Equation (12) 
          compute σ 
          if (σmax < σ) 
               Cbest = C  
          n = n+1 
     until n = N 

 

3.  Experimental Results  
We have implemented our method in Java and experimented it on a Pentium 4 2.4GHz 
PC with two real scenes. Table 1 shows the configuration of the two scenes. We 
prepared 15 panoramic images, each at a resolution of 4500x450, for each of the two 
scenes. The 15 panoramic images form 18 self-loops and 32 adjacencies. Table 2 shows 
the reprojection error of the two scenes. While the reprojection error for existing 
methods is usually a few pixels, our method is about one pixel on average.  

 
Figures 5(a) and 5(b) show two of the 15 panoramic images for each of the two 

scenes. The epipolar curves, which are determined from the recovered camera pose, are 
superimposed on the images. Figures 5(c) and 5(e) show the epipolar curves computed 
by the initial E (section 2.3.1) at two feature points, which do not lie on the epipolar 

Figure 4. A 3D point Xi can be inferred from view j and then projected to views k, l.  

λj
idj

i 

view j
view kview l

Xi 

Node Adjacency Self-loop 
15 32 18 

Table 1.  Configuration of two scenes. 

Reprojection Error (pixel) Average Maximum Standard Deviation 
Exp 1 0.82 1.80 0.47 
Exp 2 1.03 2.00 0.56 

Table 2.  Reprojection errors of the two experiments with 15 panoramic images. 



 

Figure 6. Inlier percentage with rotational R registration is compared with that 
without rotational R registration as a function of image number.  
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curves. After applying the rotational registration and the position recovery processes, 
the epipolar alignment is significantly improved as shown in Figures 5(d) and 5(f).  

Figure 6 compares the accuracy of the camera pose obtained, with and without 
rotational registration, in term of inlier percentage against the number of images. We 

can see that the accuracy is improved with global orientation adjustment.  
By applying SVD to E, rotation and translation direction can be extracted. However, 

the translation directions from different nodes are inconsistent. Refer to Figure 7. The 
translation directions (dotted lines) do not intersect on a single node due to the global 
inconsistency. By applying our position recovery method, globally consistent positions 
and translation directions (solid line) can be obtained.  
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         (c)     (d)        (e) (f) 

Figure 5.  (a) and (b) show the Eipoplar curves of the two scenes. (c) to (f) compare 
the epipolar alignment before ((c), (e)) and after ((d), (f)) the orientation 
adjustment and position recovery processes.  
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Figure 8.  Inlier percentage is compared between consistent and inconsistent 
translation T as a function of image number. 

The inlier percentage against the number of images with global consistent 
translations computed by our method and inconsistent translations is plotted in Figure 8. 
From the graph, we see that the position recovery process significantly improves the 
accuracy of the estimated camera pose. Moreover, the trend of the curves in both 
Figures 6 and 8 show that the inlier percentage without either R registration or position 
recovery decreases as the number of images increases. This is because the inconsistency 
is accumulated as the length of the path increases.     

Table 3 lists the processing time of each process. The whole recovery process takes 
around ten minutes, which is similar in performance to existing methods. The number 
of samples required in the RANSAC method is inversely proportional to the number of 
inliers (Equation 4). As the number of inliers in experiment 1 is higher than that in 
experiment 2, RANSAC computation requires less samples, i.e., lower processing time. 

 

4.  Conclusion 
In this paper, we have proposed a camera pose recovery method for omni-directional 
images. Feature points are automatically extracted and matched across every image 
pair. The correspondences serve as the only input to our method. By transforming 
image space point, linear mapping function is established to correlate omni-directional 

Process E Estimation R Extraction  and Adjustment Position Adjustment Total 
Exp 1 1.30 mins 0.0028 mins 6.13 mins 7.43 mins 
Exp 2 2.18 mins 0.0027 mins 9.78 mins 11.96 mins 

Table 3.  Computational time in each process with 15 panoramic images. 

T ' 1->0T 1->0

T 2->0

T' 2->0

T 3->0

T 4->0

T' 3->0

T '4->0

img 0

Figure 7.  Global position and relative directions.



 

images. Rotational adjustment aggregates relative orientations in global consistent 
orientations. It effectively minimizes error accumulation. By deriving and solving the 
global formulation, a set of globally optimized positions from transformed points can be 
obtained. Because no planes and lines are required, it simplifies the implementation and 
does not rely on regular scene structures. 
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