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Abstract

In this paper, we describe how 3D Euclidean measurements canbe made
in a pair of perspective images, when only minimal geometricinformation
are available in the image planes. This minimal informationconsists of one
line on a reference plane and one vanishing point for a direction perpendicu-
lar to the plane. Given these information, we show that the length ratio of two
objects perpendicular to the reference plane can be expressed as a function of
the camera principal point. Assuming that the camera intrinsic parameters re-
main invariant between the two views, we recover the principal point and the
camera focal length by minimizing the symmetric transfer error of geometric
distances. Euclidean metric measurements can then be made directly from
the images. To demonstrate the effectiveness of the approach, we present the
processing results for synthetic and natural images, including measurements
along both parallel and non-parallel lines.

1 Introduction

Metrology from uncalibrated images is becoming of increasing interest for many appli-
cations. This problem is trivial if the camera is calibratedmeaning that its intrinsic pa-
rameters and its position and orientation are known. Cameraparameters can be obtained
by using standard methods if a calibration object or measurements of enough 3D points
in the scene are available [4], or alternatively using self-calibration methods from un-
structured scenes [8, 6]. However, such measurements are not always available, and also
self-calibration techniques typically require bootstraping from a projective reconstruction,
often leading to solving complex non-linear problems that are typically ill-conditioned,
and hence are not easily tractable, or may not always converge to the optimum solution.

Vanishing points or parallel lines have proven to be useful features for this task [1,
7, 2, 3, 5, 9]. In a seminal work, Criminisi et al. [3] proposedan approach for single
view metrology, and showed that affine scene structure may berecovered from a single
image without any prior knowledge of the camera calibrationparameters. The limitation
of their aproach is that they require that three mutually orthogonal vanishing points to
be available simultaneously in the image plane. Also, in order to recover the metric
measurements they require three reference distances. Their advantage however is that
they need only one image to solve the problem. In contrast, our approach requires only
one vanishing point along a vertical to a reference plane. However our method would
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Figure 1: Measuring height of vertical objects: (a) The standing person has known height,
(b) Computed heights of two microphone stands.

require two images to solve the problem with only one reference distance. Examples of
images where such scenario may apply are commonly encountered in indoor and outdoor
environments, where there is a ground plane and some up-right objects, e.g. humans,
street lamps, trees, etc., but not all vanishing points avialable, see for instance Figure 1.
Note also that Criminisi et al. can only perform measurements in the reference plane and
the planes parallel to it. In our approach, we can directly perform measurements outside
the reference plane and along non-parallel lines.

Therefore, in this paper, we are interested in the problem ofaffine measurements i.e.
the length ratios of parallel and even non-parallel line segments from possibly one or two
uncalibrated images of a scene. We then extend the approach to metric measurements
by either assuming that the principal point is known, or by minimizing the symmetric
transfer errors of geometric distances. It is assumed that the images are obtained by per-
spective projections with constant intrinsic parameters,and negligible radial distortions,
which otherwise can generally be removed [6]. The rest of thepaper is organized as
follows. In the next section, we present closed-form solutions for metric measurments
under two different scenarios, assuming that the principalpoint is known. We then extend
the results in section 3 to metric measurements when the principal point is also unknown
and solve the problem by minimizing the symmetric transfer error of geometric distances.
Section 4 describes the experimental results. Both computer simulation and real experi-
mentations are used to validate the proposed approach. Finally, in section 5, we present
some discussions and concluding remarks.

2 Closed-form Solution

In this section, we consider two different cases, where someobjects perpendicular to a
reference plane have been observed in two or more uncalibrated images. For instance, we
will show that two upright objects standing on the ground plane are sufficient for comput-
ing their height ratio, as well as the ratio of the lengthes ofother parallel or non-parallel
objects in the scene. These affine measurements can be extended to metric measurements
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Figure 2: Two objectsb1t1 andb2t2 are both perpendicular to the planeπ. If the two
objects have different height, the line connectingt1 andt2 will intersect withπ at the point
p which is collinear withb1 andb2. The vanishing pointvy for the directionb1b2 and the
three pointsp, b2 andb1 define a cross ratio. The value of the cross ratio determines the
ratio of lengths between the two vertical objects; see text.

if we assume that the principal point is known. In section 3 weshall relax this latter as-
sumption, and provide a solution under a more general scenario. The basic geometry is
shown in Figure 2, which consists of one line on a reference plane, and one vanishing
point for a direction perpendicular to the plane. Letvx be the vanishing point along the
vertical direction, which is determined by intersecting the two vertical objects in the im-
age plane. The line segment on the reference plane connects two base pointsb1 andb2 of
the two vertical objects.

We will first consider in subsection 2.1 the spacial case where the two vertical ob-
jects have the same heights. This is equivalent to assuming that two vanishing points are
known. One example is shown in figure 4. Although, only the ratio of the two vertical
objects is known, we show that it is also possible to do measurements along directions
other than perpendicular line segments and outside the reference plane. This may be done
given either a single image and two reference distances, or alternatively given only one
reference distance if an extra view is available. We then extend this idea in subsection 2.2
to the more general case, where the two vertical objects havedifferent heights, i.e. when
only one vanishing point is known.

2.1 Measurement from Two Orthogonal Vanishing Points

Let vx, vy, and vz denote the three mutually orthogonal vanishing points. As is well
known, for a unit aspect ratio and zero skew, the principal point c is the orthocenter of the
triangle with vertices atvx, vy, andvz [1] (see Figure 3). In the special case of two vertical
objects with the same height, the pointsp andvy in Figure 2 coincide. Therefore, we have
two known vanishing points,vx andvy, and one unknown one, i.e.vz. Metrology on
images with three known vanishing points and under a generalperspective camera model
are described in detail by Criminisi, Reid and Zisserman in [3].

When the third vanishing point is unknown and only one view is available, we need
either two reference distances to measure up to only a rigid ambiguity, or the ratio of the
object height tob1b2 in Figure 2, leaving a scale ambiguity. Either information can be
used to determine the position of the two vertical objects, and hence the 3D coordinates
of the four end points. For this purpose, note that the 3×3 planar homographyH, which
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Figure 3: Principal pointc is the orthocenter of the three vanishing points of mutually
orthogonal directions.
maps the world plane passing through the two vertical objects to the image plane, can be
computed as described below. Assuming a zero skew and unit aspect ratio,

H ∼





f r11+u0r31 f r12+u0r32 f tx +u0tz
f r21+ v0r31 f r22+ v0r32 f ty + v0tz

r31 r32 tz



 (1)

where f is the camera focal length,(u0 v0) is the principal point,tx, ty, andtz are the
components of the translation vector, andri j are the components of the rotation matrix
R = RzRyRx given by

r11 = cos(θy)cos(θz) (2)

r21 = cos(θy)sin(θz) (3)

r31 = −sin(θy) (4)

r12 = sin(θx)sin(θy)cos(θz)−cos(θx)sin(θz) (5)

r22 = sin(θx)sin(θy)sin(θz)+cos(θx)cos(θz) (6)

r32 = cos(θy)sin(θx) (7)

where the pan angleθx, tilt angleθy, and yaw angleθz describe the rotation between the
world coordinate system and the camera coordinate system. Note that both coordinate
systems are up to a metric ambiguity, which in general is of nosignificant concern in
measurement and reconstruction.

Since the principal pointc is the orthocenter of the three vanishing points [1], we have

(vx − c)T (vy − c)+ f 2 = 0 (8)

In other words, the focal length depends only on the principal point c. As a result, the
three rotation anglesθx, θy andθz can also be expressed as a function of principal point.
Taking the ratio of (2) and (3), we get

θz = tan−1
(

vxy − v0

vxx −u0

)

(9)



where(vxx,vxy) are the coordinates of the vanishing pointvx and(vyx,vyy) are those of the
vanishing pointvy. Taking the ratio of (3) and (4), we get

θy = − tan−1
(

f sin(θz)

vxy − v0

)

(10)

Taking the ratio of (6) and (7), we get

θx = tan−1
(

f cos(θz)

(vyy − v0)cos(θy)− f sin(θz)sin(θy)

)

(11)

Therefore, the first two columns ofH depend only on the principal point. Because the
principal points of recent CCD cameras are very close to the center of the image, a closed-
form solution may be obtained by assuming that the principalpointc is at the center of the
image. This assumption will be relaxed later in the more general case using non-linear es-
timation discussed in section 3. The last column of equation(1) denotes the homogeneous
image point corresponding to the projection of origin of theworld coordinate system [4],
and thus can be assumed atb1 in figure 2. Since world origin is visible in images,tz in
our cases cannot be close to zero. Without loss of generality, assumêtz in one view equals
to 1. Therefore the estimated homography is of the form:

Ĥ = H̄





1 0 0
0 1 0
0 0 1/tz



 (12)

In other words, an inhomogeneous world pointM̄ and its estimated inhomogeneous world
point M̂ are related via

M̂ =
1
tz

M̄ (13)

Therefore, with the principal point assumed to be known, we get a closed-form solution
for the planar homography. Given this homography, the measurements inside the plane
passing through the two vertical objects becomes straightforward.

¿From the above derivations, one can not directly solve for all the camera parameters
without additional information, since the homography is defined up to a global scalar.
One possible solution is to use a second image with a different pose, but with the same
internal parameters. Given this new image, neither the two reference distances nor the
ratio of an object height tob1b2 would be anymore required. Also note that the closed-
form solution is affected by the error due to the assumption that the principal point is
at the center of the image. This problem may also be mitigatedby using the additional
image. Using the same approach as discussed above, the extraimage is also computed up
to a column-wise scalart ′z. The scale can be determined by forcing the image pointm′

and the corresponding image pointm in the first image (for whichtz is assumed known)
to be both projected to the same 3D world pointM. We can therefore determine all the
internal parameters, the three rotation angles, and the third column of the 3×4 camera
projection matrix. Traditional stereo or multiple view techniques [6] can then be applied
to measure distances along directions other than the vertical or outside the refernce plane.
Camera position also can be computed up to scale factor.



2.2 Measurements From One Vanishing Point

A more general and frequently occuring scenario would be when the two vertical objects
are not of the same height, or are not knowna priori to have the exact same height, e.g.
two pedestrians, a street lamp and a tree, etc.; an example isshown in Figure 2. In this
case the pointp does not coincide withvy anymore, and only one vanishing point i.e.vx

is known. The only information we have aboutvy is that it is along the lineb1b2, i.e.

vy
T [l1 l2 1]T = 0 (14)

where(l1, l2,1) is the lineb1×b2. In addition, equation (8) can be written as

vy
T





vxx −u0

vxy − v0

f 2−u0vxx +u2
0− v0vxy + v2

0



 = 0 (15)

Therefore by combining equations (14) and (15) and some simplification, we can show
thatvy is of the form

vy =





vxy − v0− ( f 2−u0vxx +u2
0− v0vxy + v2

0)l2
−vxx +u0 +( f 2−u0vxx +u2

0− v0vxy + v2
0)l1

(vxx −u0)l2− (vxy − v0)l1



 (16)

Equation (16) defines the vanishing pointvy for the directionb1b2 as a function of the
focal length f and the principal point(u0,v0), which can be assumed to be at the center
of the image as in the last subsection in order to obtain a closed-form solution 2.1. This
assumption will be relaxed later. The four pointsvy, p, b2 andb1 define a cross ratio. The
value of the cross ratio determines a ratio of the lengths of two vertical objects.

d(b2, t2)

d(b1, t1)
=

d(p,b2)d(vy,b1)

d(vy,b2)d(p,b2)
(17)

whered(,) denotes the distance between two points in the image plane. Substituting
equation 16 into equation 17, and using the fact that cross ratios remain invariant under
projection transformations between two images, we can solve for the focal lengthf . One
such equality provides four relations forf , two of which can be eliminated by verifying
that the points are in front of the cameras. For removing the remaining ambiguity one can
either rely on a third image to obtain a closed-form solution, or avoid the third image by
minimizing the symmetric transfer error of the geometric distances as shown in the next
section.

Once the focal length is computed,vy can be obtained from equation (16), and hence
one can get the length ratio from equation (17). Rotation angles can be computed from
equations (9)-(11). Translations are obtained from the last column of the projection matrix
by fixing the scale for the first camera and following the approach discussed in subsection
2.1. Given all external and internal parameters one can thenperform metric measure-
ments.

3 Nonlinear Solution

As described above, when no reference lengths or distance ratios are known, the prob-
lem can be solved given one vanishing point and a known principal point, if two images



are available. If however the principal point is unknown, orif the errors due to taking
the principal point as the image center are not negligible, then the closed-form solution
would fail. In this case an accurate solution can still be obtained by minimizing the sym-
metric transfer error of the geometric distances. In which case, the closed form solution
described in section 2 can be used to initialize the minimization step described below.

Therefore, two problems need to be addressed in this section. Firstly, we relax the
assumption that the principal point is known. Secondly, theambiguity in the solution of
the focal length will be removed. Recall that the projectionmatrices and hence the inter-
image homographyH depend on the position of the principal point up to an ambiguity
caused by the quadratic equation in (17) giving two solutions for f 2. This ambiguity
is resolved immediately if one of the solutions forf 2 leads to a complex value forf .
Otherwise, the correct value of the principal point as well as the principal point should
minimize the symmetric transfer error of the geometric image distances between pairs of
corresponding points(xi,x′i).

(u0,v0, f ) = argmin
W

∑
i

d(xi,H−1x′i)
2 +d(x′i,Hxi)

2 (18)

whered(·, ·) is the Euclidean distance between the points,W is the search window, and
the inter-image homography is given byH = Ĥ′Ĥ−1. Note that this minimization process
is similarity-invariant because only image distances are minimized and the pointsxi and
x′i, which are the projections of 3D pointsXi, do not depend on the scale in whichXi are
defined, i.e. different scaled points will project to the same points [6].

Using the closed form solution described in the previous section we can find an initial
estimate forf . Also assuming that the principal point is in some neighborhood of the im-
age center, we reduce the search space for the minimization problem in (18) to a window
around the image center and the initial estimate off . We therefore found the solution by
discretizing the search space and used an exhaustive searchto find the solution to avoid
converging to a local minimum.
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Figure 4: Measuring height of vertical objects: (a) The standing person has known height,
(b) Computed heights of two sign board posts.
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Figure 5: Performance versus noise (in pixels) using four views and nine views separately.
The results shown here are averaged over 50 independent trials.

4 Experimental Results

4.1 Computer Simulation

The simulated camera has a focal length off = 1000, unit aspect ratio, zero skew, and the
principal point close to the center of the image. The image resolution is 720×360. In the
experiments presented here, we observed the two vertical objects with height 100 and 50
units separately in nine positions. The nine observations are all close to the planeZ = 300
units, and with around 25 unit distances along x-axes and 50 unit distances along y-axes.

First we evaluate the performance versus noise level. In principle, two images suffice
to solve the calibration, but in this experimentation we used four image pairs observed
by cameras in most distant of the nine positions in order to improve the quality of the
results. Gaussian noise with zero mean and a standard deviation of σ ≤ 1.5 was added to
the projected image points. The estimated ratio is then compared with the ground truth
and shown in figure 5. The relative error of estimated ratio is1.46% for a typical noise
level σ = 0.5, and increased to 2.88% when the added noise wasσ = 1.5 which is larger
than the typical noise in practice.

We also examined the performance with respect to the number of viewpoints (i.e. the
number of image pairs). We show the results using nine views also in figure 5. With nine
views, the relative error of estimated ratio are not beyond 1% until much noise (σ ≥ 1.2)
is added. For all the noise level, the more viewpoints we have, the more accurate camera
calibration will be in practice, since data redundancy compensates for the noise in the
data.

4.2 Real Data

The proposed method was also tested on real data sets, some ofwhich are shown below
and throughout the paper. For demonstrated results shown infigure 1, 4, 6, we all use the
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Figure 6: Measurements which might be difficult in practice:(a) The height of the pine
is around 264cm, and the distance from the head of the standing people to the top of the
pine is 154cm, (b)The distance from the head of the standing people to the top of the stick
is around 140cm.

computed standing person as the reference. In figure 4, the computed heights of sign board
posts are similar which coincide with the fact in real life. In order to test the accuracy of
our algorithm, we also compared the computed results with ground truth measurements.
For instance in figure 6, the estimated stick’s height is 100.75cm, while the ground truth
is 99.4cm. The distance between the bottom of the standing person and bottom of the
stick is 116cm, the estimated one is 119.47cm. The approach can be used to measure
heights of the objects that are not accessible for direct measurement too. For instance, we
estimated the tree’s height as 263.62cm as shown in Figure 6.Other estimated distances
which might be difficult to measure in practice are also shown.

5 Conclusion

We have explored new solutions for metrology from uncalibrated images that require min-
imal geometric information. This is achieved by making somesimplifying assumptions
about the camera intrinsic parameters or by using additional images. This work therefore
extends the work of Criminisi et al. [3], whereby external geometric constraints are re-
laxed by trading off the intrinsic constraints. The resultsshow the high accuracy and the
effectiveness of the approach as compared to the ground truth. The approach can be made
further robust by using additional feature points or extra images, in which case one can
use bundle adjustment to improve the accuracy.

Appendix: Feature Extraction

Features can be extracted either manually or automatically(e.g. using an edge detector
or Harris corner detector). The features are mostly the image locations of the top and
base pointst, b. These features however are subject to errors, and hence similar to [3], it
is possible to use a maximum likelihood estimation method, with the uncertainty in the



top and base points modelled by the covariance matricesΛb andΛt . Since in the error-
free case, these points must be aligned with the vertical vanishing pointvx as in figure
2, we can determine maximum likelihood estimates of their true locations (̂t and b̂) by
minimizing the sum of the Mahalanobis distances between theinput pointst andb and
their MLE estimateŝt andb̂

argmin
b̂,t̂

[(b− b̂)T Λ−1
b (b− b̂)+(t− t̂)T Λ−1

t (t− t̂)] (19)

subject to the alignment constraint
vT

x (b̂× t̂) (20)
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