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Abstract

In this paper, we describe how 3D Euclidean measurementsecarade
in a pair of perspective images, when only minimal geoméitrficrmation
are available in the image planes. This minimal informationsists of one
line on a reference plane and one vanishing point for a dinegerpendicu-
lar to the plane. Given these information, we show that thgtleratio of two
objects perpendicular to the reference plane can be exgatassa function of
the camera principal point. Assuming that the camera isitiparameters re-
main invariant between the two views, we recover the pradgieint and the
camera focal length by minimizing the symmetric transfeoeof geometric
distances. Euclidean metric measurements can then be niraddydfrom
the images. To demonstrate the effectiveness of the afpra&cpresent the
processing results for synthetic and natural images, dictumeasurements
along both parallel and non-parallel lines.

1 Introduction

Metrology from uncalibrated images is becoming of incregsnterest for many appli-
cations. This problem is trivial if the camera is calibratedaning that its intrinsic pa-
rameters and its position and orientation are known. Caper@meters can be obtained
by using standard methods if a calibration object or measeng¢s of enough 3D points
in the scene are available [4], or alternatively using salfbration methods from un-
structured scenes [8, 6]. However, such measurements tadways available, and also
self-calibration techniques typically require bootsingfrom a projective reconstruction,
often leading to solving complex non-linear problems that tgpically ill-conditioned,
and hence are not easily tractable, or may not always coaverdpe optimum solution.
Vanishing points or parallel lines have proven to be usefatdres for this task [1,
7, 2, 3,5, 9]. Inaseminal work, Criminisi et al. [3] proposad approach for single
view metrology, and showed that affine scene structure magdmrered from a single
image without any prior knowledge of the camera calibraparameters. The limitation
of their aproach is that they require that three mutualljhagbnal vanishing points to
be available simultaneously in the image plane. Also, ireotd recover the metric
measurements they require three reference distancesr ddtheintage however is that
they need only one image to solve the problem. In contrastapproach requires only
one vanishing point along a vertical to a reference planewdyer our method would
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Figure 1: Measuring height of vertical objects: (a) The diag person has known height,
(b) Computed heights of two microphone stands.

require two images to solve the problem with only one refegettistance. Examples of
images where such scenario may apply are commonly encedriteindoor and outdoor

environments, where there is a ground plane and some upefgécts, e.g. humans,
street lamps, trees, etc., but not all vanishing pointslabie, see for instance Figure 1.
Note also that Criminisi et al. can only perform measuremanthe reference plane and
the planes parallel to it. In our approach, we can directhfgspen measurements outside
the reference plane and along non-parallel lines.

Therefore, in this paper, we are interested in the probleaffofe measurements i.e.
the length ratios of parallel and even non-parallel linensexgts from possibly one or two
uncalibrated images of a scene. We then extend the approauckettic measurements
by either assuming that the principal point is known, or byimizing the symmetric
transfer errors of geometric distances. It is assumed lileaintages are obtained by per-
spective projections with constant intrinsic parametansl negligible radial distortions,
which otherwise can generally be removed [6]. The rest ofpidyger is organized as
follows. In the next section, we present closed-form sohgifor metric measurments
under two different scenarios, assuming that the pringipait is known. We then extend
the results in section 3 to metric measurements when theipaipoint is also unknown
and solve the problem by minimizing the symmetric transfesreof geometric distances.
Section 4 describes the experimental results. Both compirtrilation and real experi-
mentations are used to validate the proposed approachllyf-inssection 5, we present
some discussions and concluding remarks.

2 Closed-form Solution

In this section, we consider two different cases, where sobjects perpendicular to a
reference plane have been observed in two or more unca&ibiratges. For instance, we
will show that two upright objects standing on the groundplare sufficient for comput-
ing their height ratio, as well as the ratio of the lengthestbEr parallel or non-parallel
objects in the scene. These affine measurements can be externtetric measurements



Figure 2: Two objectd;t; andb,t, are both perpendicular to the plame If the two
objects have different height, the line connectipgndt; will intersect withrrat the point

p which is collinear withb; andb,. The vanishing pointy for the directionbib, and the
three point, b, andb; define a cross ratio. The value of the cross ratio determirees t
ratio of lengths between the two vertical objects; see text.

if we assume that the principal point is known. In section 3shvall relax this latter as-
sumption, and provide a solution under a more general sicenBine basic geometry is
shown in Figure 2, which consists of one line on a refereneagland one vanishing
point for a direction perpendicular to the plane. kgte the vanishing point along the
vertical direction, which is determined by intersecting ttvo vertical objects in the im-
age plane. The line segment on the reference plane connectase pointd; andb; of
the two vertical objects.

We will first consider in subsection 2.1 the spacial case wliee two vertical ob-
jects have the same heights. This is equivalent to assumaidvto vanishing points are
known. One example is shown in figure 4. Although, only théraf the two vertical
objects is known, we show that it is also possible to do megsents along directions
other than perpendicular line segments and outside theerefe plane. This may be done
given either a single image and two reference distancedieynatively given only one
reference distance if an extra view is available. We thearekthis idea in subsection 2.2
to the more general case, where the two vertical objects diffeeent heights, i.e. when
only one vanishing point is known.

2.1 Measurement from Two Orthogonal Vanishing Points

Let vy, vy, andv, denote the three mutually orthogonal vanishing points. sAsvell
known, for a unit aspect ratio and zero skew, the principaitpois the orthocenter of the
triangle with vertices aty, vy, andv, [1] (see Figure 3). In the special case of two vertical
objects with the same height, the poiptandvy in Figure 2 coincide. Therefore, we have
two known vanishing pointsyx andvy, and one unknown one, i.e/;. Metrology on
images with three known vanishing points and under a geperapective camera model
are described in detail by Criminisi, Reid and Zissermar8in [

When the third vanishing point is unknown and only one viewvilable, we need
either two reference distances to measure up to only a rigli@uity, or the ratio of the
object height tdo1b, in Figure 2, leaving a scale ambiguity. Either informati@nde
used to determine the position of the two vertical objeatsl, laence the 3D coordinates
of the four end points. For this purpose, note that the33planar homographid, which



Vy vanishing line Vy
Figure 3: Principal point is the orthocenter of the three vanishing points of mutually
orthogonal directions.

maps the world plane passing through the two vertical objecthe image plane, can be
computed as described below. Assuming a zero skew and peitastio,

frig+uorsy  frio4-uorsz  ftx+ Uot;
H~ | froo+voras froo+vorsa  fty+vot; (2)
rai raz tz
where f is the camera focal lengtiiup Vo) is the principal pointy, ty, andt, are the

components of the translation vector, andare the components of the rotation matrix
R = R;RyRy given by

ri1 = cog6y)cog6;) (2
ro1 = cog6)sin(6,) (3)
r31 = —sin(6y) (4)
ri12 = sin(6) sin(6y) cog 6,) — cog 6) sin(6;) (5)
r22 = Sin(6,) Sin(8y) sin(6;) + cog(6) cos(6;) ©)
r32 = cog6y) sin(6k) ()

where the pan angl@,, tilt angle 8, and yaw angleéd, describe the rotation between the
world coordinate system and the camera coordinate systemte tNat both coordinate
systems are up to a metric ambiguity, which in general is osigaificant concern in
measurement and reconstruction.

Since the principal poirttis the orthocenter of the three vanishing points [1], we have

(vx—0)T(vy—c)+f2=0 (8)

In other words, the focal length depends only on the prifgypint c. As a result, the
three rotation angle8y, 6, and 8, can also be expressed as a function of principal point.
Taking the ratio of (2) and (3), we get

6, =tan ! <M) 9)

Vyx — Uo



where(vyx, Vxy) are the coordinates of the vanishing paiptind(vyy, vyy) are those of the
vanishing pointsy. Taking the ratio of (3) and (4), we get

8, — —tan ( f sin(92)> (10)

Taking the ratio of (6) and (7), we get

. f cog6,)
B =tan ! ((vyy—Vo) cog &) — f sin(6,) sin(Q/)) o

Therefore, the first two columns &f depend only on the principal point. Because the
principal points of recent CCD cameras are very close tog¢héee of the image, a closed-
form solution may be obtained by assuming that the pringipaitcis at the center of the
image. This assumption will be relaxed later in the more grmase using non-linear es-
timation discussed in section 3. The last column of equdfipdenotes the homogeneous
image point corresponding to the projection of origin of Warld coordinate system [4],
and thus can be assumedbatin figure 2. Since world origin is visible in images,in

our cases cannot be close to zero. Without loss of generadisyimé; in one view equals

to 1. Therefore the estimated homography is of the form:

1 0 o0
A=H|O0 1 0 (12)
0 0 1t

In other words, an inhomogeneous world pdﬁ\and its estimated inhomogeneous world
pointM are related via

M=-M (13)

Therefore, with the principal point assumed to be known, efeagclosed-form solution
for the planar homography. Given this homography, the nreasents inside the plane
passing through the two vertical objects becomes straighérd.

¢ From the above derivations, one can not directly solvelfth@camera parameters
without additional information, since the homography iginkd up to a global scalar.
One possible solution is to use a second image with a diffgrese, but with the same
internal parameters. Given this new image, neither the eference distances nor the
ratio of an object height tb;b, would be anymore required. Also note that the closed-
form solution is affected by the error due to the assumptiat the principal point is
at the center of the image. This problem may also be mitighyedsing the additional
image. Using the same approach as discussed above, thinexgis also computed up
to a column-wise scaldf. The scale can be determined by forcing the image puint
and the corresponding image pointin the first image (for whiclt, is assumed known)
to be both projected to the same 3D world pdiht We can therefore determine all the
internal parameters, the three rotation angles, and the ¢blumn of the 3x 4 camera
projection matrix. Traditional stereo or multiple view edgues [6] can then be applied
to measure distances along directions other than the akatioutside the refernce plane.
Camera position also can be computed up to scale factor.



2.2 Measurements From One Vanishing Point

A more general and frequently occuring scenario would bermthe two vertical objects
are not of the same height, or are not knaavpriori to have the exact same height, e.g.
two pedestrians, a street lamp and a tree, etc.; an examgi@wen in Figure 2. In this
case the poinp does not coincide witky, anymore, and only one vanishing point iv.

is known. The only information we have abowtis that it is along the lind1bo, i.e.

vl T =0 (14)
where(l1,l2,1) is the lineby x by. In addition, equation (8) can be written as

Vxx — Ug
T Viy — Vo =0 (15)
2 — UgVx + U3 — VoViy + V3
Therefore by combining equations (14) and (15) and somel#icapion, we can show
thatvy is of the form

Vy

Viey — Vo — (T2 — UpVi + U3 — VigViy + V3) 2
Vy = | —Vi+Ug+ (2 — UgVx + U3 — VoViy + V)11 (16)
(Vxx — Uo)l2 — (Viy — Vo)1

Equation (16) defines the vanishing poigtfor the directiorb1b, as a function of the
focal lengthf and the principal poinfup, Vo), which can be assumed to be at the center
of the image as in the last subsection in order to obtain a&dkisrm solution 2.1. This
assumption will be relaxed later. The four poissp, b, andb; define a cross ratio. The
value of the cross ratio determines a ratio of the lengthe/ofvertical objects.

d(bz,t2)  d(p,bz)d(vy,b1) 17)

d(by,t1)  d(vy,b2)d(p,b2)
whered(,) denotes the distance between two points in the image planbstifiting
equation 16 into equation 17, and using the fact that crdgssreemain invariant under
projection transformations between two images, we caredoivthe focal lengthf. One
such equality provides four relations féy two of which can be eliminated by verifying
that the points are in front of the cameras. For removingéh®aining ambiguity one can
either rely on a third image to obtain a closed-form solutimmavoid the third image by
minimizing the symmetric transfer error of the geometristainces as shown in the next
section.

Once the focal length is computed, can be obtained from equation (16), and hence
one can get the length ratio from equation (17). Rotatiorleangan be computed from
equations (9)-(11). Translations are obtained from theclelsmn of the projection matrix
by fixing the scale for the first camera and following the appfodiscussed in subsection
2.1. Given all external and internal parameters one can pleeform metric measure-
ments.

3 Nonlinear Solution

As described above, when no reference lengths or distatios exe known, the prob-
lem can be solved given one vanishing point and a known géhgioint, if two images



are available. If however the principal point is unknown,fahe errors due to taking
the principal point as the image center are not negligililentthe closed-form solution
would fail. In this case an accurate solution can still beaotgtd by minimizing the sym-
metric transfer error of the geometric distances. In whigsec the closed form solution
described in section 2 can be used to initialize the minitionsstep described below.

Therefore, two problems need to be addressed in this sedtstly, we relax the
assumption that the principal point is known. Secondly,aimbiguity in the solution of
the focal length will be removed. Recall that the projectioatrices and hence the inter-
image homographid depend on the position of the principal point up to an amitygui
caused by the quadratic equation in (17) giving two solwstitor f2. This ambiguity
is resolved immediately if one of the solutions fof leads to a complex value fdf.
Otherwise, the correct value of the principal point as wsltta principal point should
minimize the symmetric transfer error of the geometric imdistances between pairs of
corresponding point&x, x;).

(o, Vo, 1) = argmin}y” d(xi,H )2 + d(x}, Hx))” (18)
|

whered(+,-) is the Euclidean distance between the poiwss the search window, and
the inter-image homography is given bly= H’A L. Note that this minimization process
is similarity-invariant because only image distances airdmized and the pointg; and
x{, which are the projections of 3D pointg, do not depend on the scale in whikhare
defined, i.e. different scaled points will project to the sgmoints [6].

Using the closed form solution described in the previoutigeeve can find an initial
estimate forf. Also assuming that the principal point is in some neighbochof the im-
age center, we reduce the search space for the minimizatiahen in (18) to a window
around the image center and the initial estimaté.dfVe therefore found the solution by
discretizing the search space and used an exhaustive gedictl the solution to avoid
converging to a local minimum.
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Figure 4: Measuring height of vertical objects: (a) The diag person has known height,
(b) Computed heights of two sign board posts.
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Figure 5: Performance versus noise (in pixels) using foenwsiand nine views separately.
The results shown here are averaged over 50 independést tria

4 Experimental Results

4.1 Computer Simulation

The simulated camera has a focal length ef 1000, unit aspect ratio, zero skew, and the
principal point close to the center of the image. The imageltgion is 720< 360. In the
experiments presented here, we observed the two vertigdtstwith height 100 and 50
units separately in nine positions. The nine observatiomaliclose to the plang = 300
units, and with around 25 unit distances along x-axes anchfi@istances along y-axes.

First we evaluate the performance versus noise level. freiplie, two images suffice
to solve the calibration, but in this experimentation wedug®ir image pairs observed
by cameras in most distant of the nine positions in order forave the quality of the
results. Gaussian noise with zero mean and a standardidewidio < 1.5 was added to
the projected image points. The estimated ratio is then epagpwith the ground truth
and shown in figure 5. The relative error of estimated ratib.46% for a typical noise
level o = 0.5, and increased to 2.88% when the added noiseonadl.5 which is larger
than the typical noise in practice.

We also examined the performance with respect to the nunibvéewpoints (i.e. the
number of image pairs). We show the results using nine vidésgsia figure 5. With nine
views, the relative error of estimated ratio are not beydhdubtil much noiseq > 1.2)
is added. For all the noise level, the more viewpoints we hidnsemore accurate camera
calibration will be in practice, since data redundancy cengates for the noise in the
data.

4.2 Real Data

The proposed method was also tested on real data sets, samécbhfare shown below
and throughout the paper. For demonstrated results shofiguire 1, 4, 6, we all use the
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Figure 6: Measurements which might be difficult in practi¢&) The height of the pine
is around 264cm, and the distance from the head of the stqupaiople to the top of the
pine is 154cm, (b)The distance from the head of the standioglp to the top of the stick
is around 140cm.

computed standing person as the reference. In figure 4, thputed heights of sign board
posts are similar which coincide with the fact in real lifa.drder to test the accuracy of
our algorithm, we also compared the computed results withiggt truth measurements.
For instance in figure 6, the estimated stick’s height is 29€m, while the ground truth
is 99.4cm. The distance between the bottom of the standirgppeand bottom of the
stick is 116cm, the estimated one is 119.47cm. The approactbe used to measure
heights of the objects that are not accessible for direcsoreanent too. For instance, we
estimated the tree’s height as 263.62cm as shown in Figutdher estimated distances
which might be difficult to measure in practice are also shown

5 Conclusion

We have explored new solutions for metrology from uncatidélamages that require min-
imal geometric information. This is achieved by making saimeplifying assumptions
about the camera intrinsic parameters or by using additioreges. This work therefore
extends the work of Criminisi et al. [3], whereby externabgeetric constraints are re-
laxed by trading off the intrinsic constraints. The resshlisw the high accuracy and the
effectiveness of the approach as compared to the grourd frbe approach can be made
further robust by using additional feature points or extnages, in which case one can
use bundle adjustment to improve the accuracy.

Appendix: Feature Extraction

Features can be extracted either manually or automati@ally using an edge detector
or Harris corner detector). The features are mostly the @ragations of the top and
base points, b. These features however are subject to errors, and hendardio3], it

is possible to use a maximum likelihood estimation methath the uncertainty in the



top and base points modelled by the covariance matrgeand/\;. Since in the error-
free case, these points must be aligned with the verticaskamg pointvy as in figure
2, we can determine maximum likelihood estimates of theie fiocations { andb) by
minimizing the sum of the Mahalanobis distances betweeringgt pointst andb and
their MLE estimate$ andb

argmir{(b ) Ay (b~ B) + (1) ATt ) (19
)t

subject to the alignment constraint o
vl (b x 1) (20)
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