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Abstract

We present a method for efficiently generating a representation of a multi-
modal posterior probability distribution. The technique combines ideas from
RANSAC and particle filtering such that the 3D visual tracking problem can be
partitioned into two levels, while maintaining multiple hypotheses through-
out. A simple texture change-point detector finds multiple hypotheses for the
position of image edgels. From these, multiple locations for each scene edge
are generated. Finally we determine the best pose of the whole structure.
While the multi-modal representation is strongly related to particle filtering
techniques, this approach is driven by data from the image. Hence the re-
sulting system is able to perform robust visual tracking of all six degrees of
freedom in real time. Real video sequences are used to compare the complete
tracking system to previous systems.

1 Introduction

Robust real-time visual tracking has important applications such as the guidance of robots
or autonomous vehicles. Our ultimate goal is the control of a miniature aerial vehicle
(MAV) such as a model helicopter, and this provides particularly challenging problems.
To control the flight it is necessary to have a real-time estimate of the vehicle’s position
and orientation (pose). In previous work with large model helicopters, e.g. [6], this has
been achieved using a combination of GPS measurements, inertial sensors and visual
information. Our aim is to control much smaller indoor vehicles which have greatly
reduced payload capacities. Accurately locating the vehicle using only the information
from a sub-miniature transmitting video camera would therefore be a great advantage.

Visual tracking systems aim to follow motion in a sequence of images from a video
camera. If the video camera is moving through a static world, this can be used to recover
the motion of the camera in real-time. Although a prototype MAV system is not yet com-
plete, initial experiments suggest that images obtainable are likely to contain large pixel
noise and suffer from substantial motion blur. Further, MAVs are particularly unstable
platforms and hence the tracking system must be able to handle large motion disturbances.

To address these problems, we propose a novel multiple hypothesis approach which
can reliably track polyhedral surroundings for which an accurate 3D edge model is known.
This paper makes two contributions. In Section 2 we show how ideas from RANSAC can
be combined with particle filtering to generate multi-modal posterior distributions. A key
benefit of this method is that it permits the tracking problem to be decomposed into two
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steps. Firstly, given noisy edgel locations, a multi-modal posterior for the location of
each scene edge can be generated. Secondly, these can be used to generate a multi-modal
posterior for the camera pose. The system requires multiple edgels to be found along
image scan-lines and so in Section 3, we describe the second contribution: a method
of finding multiple texture change-points in a pixel sequence. The effectiveness of the
resulting real-time tracking system is discussed in Section 4.

1.1 Previous Work

Existing real-time tracking systems can be split into two groups: those which rely on a
predetermined model of the tracked scene and those which learn the surroundings as the
sequence progresses. Some very encouraging progress has been made recently in the latter
group [4] and since the construction of models is costly, systems which automatically
create or adapt models are advantageous. However, in areas where the scene is reasonably
static, the use of prior knowledge (in the form of a model) can only be beneficial. In
particular, model based systems can more easily reject unmodelled features and so are
more tolerant of non-static elements in the images, such as passing humans.

Many model based tracking schemes work by matching point features. Some methods
sequentially match features from adjacent frames e.g. [14]. Recent contributions [16] have
largely eliminated both drift and jitter through the use of inter-frame matching combined
with precomputed keyframes. Whilst many scenes can be successfully tracked using point
features, some indoor areas where our MAV may be used are surprisingly free of reliable
point features. Also, point detectors can have difficulties with images with repetitive
textures such as carpets or tiles and struggle with noisy and blurred images.

Another technique is to match image edges. Edge detection is more robust to illumi-
nation and aspect changes and it is more straightforward to detect edges in the presence
of noise and blur. Typically however it is difficult to match image edges based on ap-
pearance and so a common assumption [1, 9, 11, 7] is that closer correspondences (to a
predicted position) are more likely to be correct. However, if there is a high density of
similar features, or large unpredictable image motions occur, this assumption is violated.
Although robust estimators are used to tolerate a small number of false correspondences,
in these conditions tracking often converges on an incorrect local minimum. It is also
possible [12] to work directly with image intensities rather than first performing edge
extraction. However, the same problems with local minima apply.

A number of techniques exist to deal with local minima. Particle filtering has proved
successful for many applications [5, 10]. However, when tracking motion in all six de-
grees of freedom, it is difficult to achieve the required robustness in real-time. Alternative
schemes which also consider multiple hypotheses have been used. In [2] the multi-modal
representation used is a piecewise combination of Gaussian distributions and is used to
track rapidly moving human figures, while in [3] image corners are used with a discrete,
tree-like, representation of the multiple hypotheses.

1.2 Overview of the Approach

The proposed system follows the same basic structure as many frame-to-frame tracking
systems, such as the early method described in [9]. For each new frame a 3D model of the
surroundings is rendered into the imaging plane at the pose obtained from the previous



Figure 1: An overview of the system tracking a carpet tile and screen, despite occlusion. From
the left: for each new frame the model is rendered in the predicted location. Next, perpendicular
searches locate matches for each model edge in the image. Finally the best overall pose is found.

frame. The image is next searched to identify the new location of the rendered model
edges. This is performed using 1D searches along regularly spaced scan-lines, perpendic-
ular to each rendered model edge. Finally an optimisation is performed, adjusting the six
pose parameters to align the rendered edges with those found in the image. These stages
are shown in Figure 1.

The system proposed in [1] used RANSAC to improve edge based tracking by robustly
estimating the location of each model edge in the image. Here, we extend this by ad-
mitting multiple hypotheses for each line, as described in the next section. This gives
the resilience to local minima demonstrated by particle filtering approaches whilst still
providing real-time operation.

2 Multi-Modal Posterior Representations

The Random Sample Consensus (RANSAC) paradigm, introduced by Fischler and Bolles
[8], has been widely used throughout the computer vision field to obtain robust estimates
of model parameters. The prototypical example of its use is to obtain the parameters
of a straight line which best fits a set of noisy measurements, M, containing outliers.
The parameters describing the straight line through two measurement points selected at
random are obtained. A consensus count for this hypothesis is then found by comparing,
to a threshold value, the distance from the line to all the measurement points. The process
is repeated N times and the hypothesis with the highest consensus is finally selected.

The consensus system proposed in [8] can be expressed as:

C(θ) = ∑
m∈M

f (dist(m,θ)) , (1)

where dist(m,θ) is a function giving the distance from a measurement point m to the
straight line defined by θ and:

f (d) =

{

0 (d < t)
1 (d > t)

, (2)

where t is the consensus range or threshold. Defined in this way, the hypothesis with the
smallest consensus score is chosen. In [15] it was observed that the performance of the



system is improved if, at no extra computational cost, this last function is replaced with:

f̃ (d) =

{

d (d < t)
t (d > t)

. (3)

When the consensus score is expressed in this way, RANSAC is being used to find the
minimum of a function defined continuously over model parameters. [15] shows how
(under certain assumptions) f̃ (d) can be used to obtain a consensus score which is the
negative log likelihood that the hypothesis is correct. From this the posterior probability
P(θ) can be easily calculated, as used in Section 2.1.

The approach proposed here borrows an idea from CONDENSATION and retains all
of the hypotheses tested. Each is then treated as a particle in the representation of the
posterior distribution. Suppose that a set of measurements is obtained which contains
noisy points from more than one straight line, along with some outliers. RANSAC applied
to this data set would find the parameters of only the line with the most corresponding
measurement points (given a sufficiently large N). Instead, if the consensus score from
all N RANSAC hypotheses are retained, these can be used to give an approximation to the
multi-modal posterior. This representation is beneficial if the next task is to draw samples
from the posterior since this can be approximated by drawing from the stored hypotheses.
A good approximation can be obtained with a relatively low N since there are typically
many proposal points at or near the modes of P. However, this means that it is not correct
to simply select hypothesis n with probability pn = P(θn).

If a posterior distribution to be represented is P(θ), and given a set of points Θ =
θ1 . . .θN drawn from a (different) proposal distribution Q(θ), then draws from the pos-
terior distribution can be approximated by resampling from Θ, where the probability of
selecting sample n is:

pn =
P(θn)

Q(θn)
. (4)

Provided that Q(θ) > 0 for all θ where P(θ) > 0 this process converges to sampling
from P as N → ∞. In the case of multi-modal RANSAC, the proposals are those generated
by random sampling of data tuples created by a process driven by P. The probability of
obtaining the sample point, Q(θn), is a function of the consensus set (the number of data
points within consensus range of θn). If the size of the consensus set is cn and the number
of data samples needed to form a hypothesis is j, then Q is given by:

Q(θn) = k cn C j = k
cn!

j!(cn − j)!
, (5)

provided that the same consensus set is obtained from any j-tuple subset. Although this is
not strictly the case, in practice the approximation works well. Hence when sampling from
a multi-modal representation of a posterior generated by RANSAC, each hypothesised
sample, θn should be chosen with a probability, pn, given by:

pn = K
P(θn)
cn C j

, with K chosen such that ∑ pn = 1. (6)

2.1 Application to Finding Straight Edges in an Image

Given an initial estimate for the location of an edge in an image, the task is to generate the
posterior distribution of the true position of that edge given the image data. This distribu-



tion is defined over the model parameters r1 and r2, which describe the motion of the two
endpoints of the line (see Figure 2). First, edgels are obtained, either at points of maximal
intensity gradient, or using the scheme described in Section 3. The ideas proposed in the
previous section are then applied to find straight lines through these edgels.
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Figure 2: a) An closeup of Figure 1 showing a rendered edge (black), the two model parameters, the
detected edgels, and samples from the multi-modal representation (white) b) contours of the true
multi-modal posterior c) the sampled representation at the same scale.

The required posterior distribution describes the probability density that the corre-
sponding straight edge in the image is at θ = {r1,r2}. An image edge is modelled as
causing edgels which are displaced from a straight line by additive Gaussian noise. If dn,s

is the distance along each perpendicular scanline s, from the intersection with the hypoth-
esis edge θn to the nearest edgel, a close approximation1 to the negative log likelihood
is:

C(θn) = const+∑
s

f̃ (dn,s
2) , (7)

with f̃ () as in (3). Hence the posterior is given by:

P(θn) = K e−
C(θn)

2σ2 . (8)

In this case the N samples are obtained by randomly selecting two edgels and calculat-
ing the parameters that describe the straight line through the two points. The multi-modal
representation is completed by calculating and storing Θn = {θn,P(θn)} for each. Since
in this case j = 2, samples can then be drawn from the representation by selecting θn with
a probability proportional to:

pn =
P(θn)

cn(cn −1)
, (9)

where cn is the corresponding consensus count as defined for (5).
The resulting system is demonstrated in Figure 2 which compares the full posterior

distribution to that generated by sampling the RANSAC representation, with N = 100.

1This approach fixes the number of inliers to be constant and hence the inlier/outlier ratio has only a small
effect on the true negative log likelihood.



2.2 Determining the Camera Pose

Having found a set of hypothesised correspondences for each model edge, a second level
of RANSAC is used to find a new camera pose which maximises consensus of the original
edgels. Three model edges are selected at random and for each a corresponding image
line is chosen according to (9). This is usually sufficient to constrain a new hypothesised
pose. It is straightforward to obtain a Jacobian matrix which describes the rate of change
of each line parameter, ri, with respect to each pose parameter, α j, about the current pose
α . Hence a linear approximation to the new hypothesised pose is given by:

α̂ = α + J−1r where Ji, j =
∂ ri

∂α j
(i = 1..6, j = 1..6) . (10)

The consensus score for the second stage RANSAC is found using a full Jacobian
matrix to give a linear prediction for the new parameters of all the model lines. The
probability density of each new line is evaluated from the original edgels using (8) and
the product of these then gives the overall pose posterior. The second stage RANSAC is
performed L times and the pose with the highest posterior is retained as the estimate of
the camera pose for that frame.

3 Finding Texture Change-points in a 1D Line Search

Traditionally (e.g. [9, 10]) an edgel is defined as a point of maximal intensity gradient
along a 1D scanline. Here however we instead consider an edgel as a change-point in
a 1D texture process. In our recent work [13] we described a detector which finds the
single most probable location of a texture change. Here this is extended to allow multiple
possible change-points. This allows the tracking system to additionally operate in simply
textured environments yet adds little extra computational cost.

In [13] we proposed a tracking system similar to [9] but used a 1D texture change-
point search instead of a simple gradient based edgel detector. Pixel intensities are first
grouped into regularly spaced intensity bins. Consider a known zeroth-order texture gen-
erating process T1 where pixel intensities are independently drawn from a probability dis-
tribution over I intensity bins (T1 = {pi}; i = 1..I). Hence given a sequence of N binned
pixel intensities SN

0 = (s0,s1, ...sN−1), the probability of obtaining that sequence, given
process T1 is:

P(SN
0 |T1) =

N−1

∏
n=0

psn , (11)

The key result from [13] is that if the texture process is instead unknown, but all possi-
ble texture processes are equally likely (i.e. there is a uniform prior on T ), then given a
sequence of n pixel intensities Sn

0 = (s0,s1, ...sn−1) from T , the expected probability of a
further sample, sn from T is given by:

E(psn |S
n
0) =

osn +1
n+ I

, (12)

where there are o j occurrences of the symbol j in the sequence Sn
0. Hence the probability

of the entire sequence given a single texture is:

P(SN
0 ) =

N−1

∏
i=0

E(psi
|Si

0) =
(I −1)! ∏I

i=1(oi +1)!
(I +N −1)!

, (13)



In [13] this result was used to find the most probable location for a single texture
change-point along a scanline and an efficient algorithm for this was presented. In this
work however, multiple change-points must be considered. Instead of maximising the
probability of the location of the single change-point given a sequence of intensities, we
must find the set of change-points with maximum probability. If the sequence of N pixels,
S, is modelled by m−1 distinct textures between m change-points, M = (c1,c2...cm):

P(S|M) =
m

∏
j=1

P(S
c j+1
c j

) . (14)

Finally using Bayes’ rule we maximise:

P(M|S) =
P(S|M)P(M)

K
. (15)

For this work P(M) was chosen simply as P(M) = λ m, with λ constant and < 1.
Evaluating (15) for all 2N possible combinations of change-points would be compu-

tationally prohibitive. Fortunately it is possible to use a dynamic programming algorithm
to improve efficiency greatly. The most probable set of change-points can be determined
by considering the location of the last change-point in the sequence, cm. Suppose that
argmax

M′
P(S k

1 |M
′) is known for all k < l. The most probable position of cm is then:

cm = argmax
c

P(S l
0 |last change-point at c)

= argmax
c

[

max
M′

P(S c
0 |M

′)P(S l
c | /0)

]

, (16)

since the probability of the sequence after cm is independent of the sequence up to cm.
/0 is the empty set implying no change-points. Hence:

argmax
M

P(S l
0 |M) = {l}∪ argmax

M′
P(S cm

0 |M′)

and max
M

P(S l
0 |M) = max

M′
P(S cm

0 |M′)P(S l
cm
| /0) . (17)

By induction these expressions can be evaluated sequentially for l = 0..N.
This means that, for l = 0, P(S0

0 |0,1) is evaluated using s0. At the second step
both P(S1

0 |0,2) and P(S1
0 |0,1,2) must be evaluated using the value from the first step

and s1. Using these values, there are four potential sets of change-points to evaluate
at the third step. However, the change from P(S 1

0 |0,2) to P(S2
0 |0,2,3) is the same as

that from P(S1
0 |0,1,2) to P(S2

0 |0,1,2,3) since by (14), the probability of the sequence
after a change-point at 2 is independent of the sequence before it. Hence the most prob-
able of P(S1

0 |0,2) and P(S1
0 |0,1,2) will lead to the most probable of P(S2

0 |0,2,3) and
P(S2

0 |0,1,2,3). So at the third step we can simply pick the highest probability from the
second step, and only evaluate three new probabilities. This means that when processing
the nth pixel we must only evaluate n possibilities, giving a total of N2/2 operations for
the entire sequence. The complete operation is shown in Algorithm 1.

Whilst this is not a major computational load, a second very simple speedup is pos-
sible. Since (15) will never be maximal if there is a change-point between pixels of the
same binned intensity, there is no need to consider such cases. This offers a massive speed
improvement in areas of the image which have a relatively constant intensity.



Algorithm 1 Finding texture change-points along a 1D scanline

dim Observations[NUM PIXELS][NUM BINS]
dim LogLikelihoods[NUM PIXELS], Changepoints[NUM PIXELS]
BestLogLikelihood=0

for i=1..NUM PIXELS do // Loop for each pixel in the sequence
for j=1..NUM BINS do // Set up a new node with a cleared histogram

Observations[i][j]=1 // Seed with 1 sample per bin
end for
// and start with the best log likelihood to that change-point plus prior ‘penalty’
LogLikelihoods[i]=BestLogLikelihood-log(λ )

BestLogLikelihood=BIG NUM
for k=1..i do // Loop round the nodes

// update the node’s log likelihood given the new pixel using (12)
LogLikelihoods[k]+=log(∑ Observations[k][])-log(Observations[k][Pixels[i]])
Observations[k][Pixels[i]]+=1
// and store the best ready for the next outer loop
if LogLikelihoods[k] < BestLogLikelihood then

BestLogLikelihood=LogLikelihoods[k]
Changepoints[i]=k

end if
end for

end for

// The optimal changepoints can now be found by working back:
// c1=Changepoints[NUM PIXELS], c2=Changepoints[c1], etc.

4 Results

Figure 1 shows a simple example of successful tracking which demonstrates several ben-
efits. Firstly, the system is able to track in the presence of simple textures, such as carpets.
Secondly, the multi-modal posterior representation means that the system is able to con-
sider multiple correspondences. In Figure 1, the chair produces a stronger edge than the
carpet tile but, since both edges appear in the multi-modal posterior, the system sticks to
the correct edge since this provides a better overall match. Finally, the scheme is rela-
tively tolerant to occlusion. Although both the chair and the wastebasket in Figure 1 are
unmodelled clutter, the system (given a large enough L) should find the correct pose as
three of the modelled edges are visible in the image. Of course, clutter will reduce the
overall pose posterior score, but typically the best score will be the correct pose.

The system was also tested on two full video sequences, one of a staircase and one
of a corridor. Although both sequences were prerecorded, processing was performed at
10fps and 30fps respectively (on a single processor 2.4GHz Pentium) and selected frames
are shown in Figure 3. In both cases the predicted location for each frame was simply that
found in the previous frame. The staircase sequence demonstrates the system’s ability
to cope with textured surfaces (as shown in Figure 4) as well as rapid motion (leading
to large inter-frame changes) and significant orientation changes. Tracking fails almost
instantly if a simple gradient based edge detector is used instead of the scheme proposed



Figure 3: Frames 1,50,100,150 from a staircase video and 1,200,400,600 from a corridor sequence.

Figure 4: Left, a closeup from frame 200 corridor showing correct edge finding, despite significant
image blur. Middle, a closeup from frame 100 of staircase showing edges being found on a textured
surface. Right, an example of our single hypothesis system falling into an incorrect local minimum.

in Section 3 since the speckled steps produce a huge number of hypothesis edges. The
corridor sequence uses relatively poor video with significant pixel noise and blurring and
again, robustness to occlusion is demonstrated.

The corridor sequence was also tested on two other tracking systems, a demonstration
version of ‘boujou’ and our earlier edge based system [7]. ‘boujou’ is a commercial prod-
uct (www.2d3.com) which performs offline bundle adjustment of tracked interest points.
The blur and pixel noise present in the images means that point features are difficult to
match and tracking was regularly lost.

The corridor sequence also contains several times at which multiple edges align, an
example of a local minimum which often causes single hypothesis systems to fail. Our
earlier edge based system suffered from these failures (Figure 4) but the ability of the sys-
tem proposed here to consider multiple hypotheses allows tracking to continue correctly.

5 Conclusions

This paper has presented a method for generating a representation of a multi-modal distri-
bution. This is particularly beneficial when partitioning a problem such that the multiple



hypotheses from one stage provide samples for further processing. The method has been
successfully applied to the task of locating straight edges in an image using the results
from a novel texture change-point detector and subsequently to perform visual tracking
of known polyhedral objects. The system shows a significant improvement in motion ro-
bustness over previous techniques. Additionally, due to the data driven approach, it can
be used to track all six degrees of freedom in real time.
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