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Abstract

The problem of motion estimation, in general, is made difficult by large il-
lumination variations and by motion discontinuities. In recent papers, we
and others have proposed global approaches to deal with both problems si-
multaneously within the regularization framework. A major drawback of
such global methods is that several regularization parameters responsible for
the integration of the illumination and motion components need to be deter-
mined in advance. This has reduced the applicability of global methods. In
this paper, a parameter-free local approach, which solves a linear regression
problem using a simple parametric model, is presented. To achieve robust-
ness for the linear regression problem, we introduce a modified version of the
least median of squares algorithm. We show quantitative error comparisons
between the results obtained by our local approach and those produced by
several global methods. Our results show that our local method is compara-
ble to the best results obtained by the global approaches yet does not require
any manual selection of parameters.

1 Introduction

The estimation of motion in images is a basic task in computer vision with many interest-
ing applications such as segmentation, structure from motion, robot navigation and object
recognition. A primarily goal in the field is to estimate the scene or object motion as pre-
cisely as possible. A classical way to compute the scene or object motion from a sequence
of images is the optical flow technique, introduced by Horn and Schunck [5].

Most optical flow estimation techniques are based on either the brightness constancy
or the motion smoothness constraint or both [2, 6]. However, in realistic scenarios, such
constraints almost never hold. For example, a pixel can change its brightness value be-
cause an object moves (translates or rotates) to another part of the scene with different
lighting or because the illumination of the scene (globally or locally) changes in time.
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One way to deal with large illumination variations is to replace the assumption of con-
stancy of pixel brightness value with a more realistic model. Gennert and Negahdaripour
[4] were among the first to propose a method robust to illumination changes. Their al-
gorithm assumes that the brightness at timet + δ t is related to the brightness at timet
through a set of parameters that can be estimated from the image sequence.

The other basic assumption, that of motion smoothness where one assumes neigh-
boring pixels to belong to the same object, is obviously violated when an object moves
in front of another at a different velocity. This problem can be solved by recovering the
structure of the motion as indicated by the majority of the pixels in the vicinity of a motion
boundary while eliminating those pixels that are inconsistent with the majority. The lat-
ter pixels are referred to as “outliers”. The optical flow estimation problem with outliers
falls into a general robust parameter estimation problem. Many different techniques have
been proposed to estimate accurate optical flow in the presence of multiple motions by
adapting a robust estimation technique that is less sensitive to the outliers than standard
estimation methods [1, 3, 6, 11].

Most of these robust estimation techniques for optical flow calculation can be classi-
fied into two different groups. The first group corresponds to the global methods where
estimation is made robust by minimizing a regularization function for all the pixels of the
image. For example, Black and Anandan [3] use an M-estimator instead of the quadratic
estimator as the regularization function to be minimized. The second group includes the
local approaches, which addresses robustness by solving a set of over-determined linear
equations for pixels in a local area of the image. Examples are the algorithms of [1] and
[11] where the authors use the least median of squares (LMS) method instead of the stan-
dard least squares (LS) method to solve the regression problem. The LMS method has a
high breakdown point of0.5, which is regarded as a practical limit in robust statistics, and
has been broadly used in computer vision [15].

In our previous work, we presented a formulation that simultaneously addressed the
two problems – the problem caused by large illumination variations and the problem
caused by motion discontinuities – in the form of a global method [6]. To do this, we re-
worked Gennert and Negahdaripour’s [4] formulation within the robust statistical frame-
work of Black and Anandan [3]. This allowed us to be simultaneously robust to both
motion discontinuities and illumination changes. Other global approaches that integrate a
robust estimation framework and a varying illumination model can be found in [14, 16].

However the global methods described in the preceding paragraph have many param-
eters that need to be carefully tuned in order to obtain desirable results. This drawback has
lead us to the local approach described in this paper. For this, we solve Negahdaripour and
Yu’s [9] over-determined system of equations with a technique similar to that originally
proposed by Rousseeuw and Leroy [13].

The rest of this paper is organized as follows. In Section 2, we summarize our global
algorithm. Section 3 presents our new local approach. Section 4 details on the experi-
mental results. We conclude in Section 5.



2 A Global Approach for Robust Optical Flow
Estimation under Varying Illumination

To estimate optical flow robustly, with regard to the problem caused by large motion dis-
continuities and the problem caused by large illumination variations, we have previously
integrated Gennert and Negahdaripour’s varying illumination model [4] with Black and
Anandan’s robust estimation framework [3] in a form of global approaches [6]. In our
previous integrated method, optical flow is estimated by minimizing the following regu-
larization function over all the pixels of the image

E =
∫ ∫





ρ(Ixu+ Iyv+ It −mI−c,σd)
+λs[ρ(∇u,σs)+ρ(∇v,σs)]

+λmρ(∇m,σm)
+λcρ(∇c,σc)





dxdy, (1)

whereIxu+ Iyv+ It −mI−c is the error term for the brightness constraint used,Ix, Iy and

It are the spatial and temporal partial derivatives of the image,u = ∂x
∂ t andv = ∂y

∂ t are the

motion parameters (i.e., optical flow),m= ∂M
∂ t andc= ∂C

∂ t are the radiometric parameters
in whichM andC are a multiplicative and an additive term for varying illumination effect
used in Gennert and Negahdaripour model.

To regularize the brightness constraint, smoothness constraints are used for motion
and radiometric parameters in the form of minimizing the gradient of parameters,u, v,
m, andc. For these constraints,λs, λm, andλc are used to determine the relative impor-
tance of each term. To cope with outliers mostly at the motion boundaries, we use the
Lorentzian function defined asρ(x,σ) = log(1+ 1

2( x
σ )2), whereσ controls the weight to

be given to the variablex. Using the same technique as in [3], we can find the global min-
imum of the objective functionE, by first choosing largeσ values which create a convex
approximation forE, and then decreaseσ values to find a more accurate minimum. This
process is repeated until we converge to a solution. Implementation details are in [6].

Though we could present superior results to the other methods that deal with the
problem of motion discontinuities and the problem of varying illumination separately,
we could not free ourselves from the cumbersome task of parameter tuning that is an
unpleasant but inherent drawback of any global method. To get the best result, one needs
to experimentally determine the values for each of theλs. To avoid this shortcoming of
global methods, we have turned our efforts in the design of the local method presented
below.

3 A Local Approach for Robust Optical Flow
Estimation under Varying Illumination

In contrast to the global method mentioned above, which needs manual parameter tuning,
the local method presented in this section does not. This can be achieved thanks to the
assumption that motion or varying illumination effect for all pixels in a small local region
of images can be restricted to a simple parametric model. The parameters of such a model
can be estimated from a set of over-determined linear equations by means of the classical
least squares algorithm [8, 9].



Unfortunately, the least squares approach is known to be very sensitive to outliers,
as for example to those produced by motion discontinuities. The goal is thus to define a
robust algorithm able to estimate the correct value for each of the parameters even when
outliers are present. Among many different local robust parametric estimation techniques
previously used in computer vision [15], the least median of squares (LMS), the iteratively
re-weighted least squares (IRLS), as well as voting-based approaches have shown success
[1, 7, 10, 11]. Since the computing time of the voting technique increases exponentially
with the number of parameters to be estimated and the IRLS method relies on a good
initial guess, we will focus on the LMS algorithm. The general algorithm of the least
median of squares method has been well studied; see, for example, [13].

We use the LMS algorithm tolocally solve an optical flow model whichintegrates
both the radiometric and motion parameters. In this paper we show derivations for the
following model [4]:

(u,v,m,c) = arg min
(u,v,m,c)

medianx,y∈R(Ixu+ Iyv+ It − Im−c)2 , (2)

whereR is the local region. Since there is no explicit closed-form solution for this equa-
tion, we need to define a way to find an approximation. To this end, we use a modified
method based on the standard LMS algorithm of Rousseeuw and Leroy [13].

Formally, we rewrite (2), as

θ̂ = argmin
θ

mediani r i(θ)2 , (3)

whereθ = (u,v,m,c)T . The indicesi = 1,2, ...,n index the image point(x,y)i in the
region of interestR and the residual errorr i(θ) = (Ix, Iy,−I ,−1) ·θ + It at the coordinate
(x,y)i . Following the standard LMS method,p (i.e., 4 in our case) number of pixels are
randomly chosen fromR and a temporary solutioñθ is calculated from a system ofp
linear equations (we modify this part and the modification is explained at the end of this
section). Using the temporary solutioñθ , the squared residualsr i(θ̃)2 are calculated
for all the other pixels inR and then the medianM = medianir i(θ̃)2 is searched. After
repeating this calculation of medianM j for j = 1,2, ...,s sub-samples, we choose a set
of parameterŝθ corresponding to the minimum median̂M amongM1,M2, ...,Ms. To get
a global minimum median, the number of sub-sampless is nCp (i.e., the number of all
possible combinations ofp linear equations fromn pixels in the regionR). Obviously
the computation cost of such a naive approach is too high. For this reason, a smaller
number of sub-samples are sought – for which the probability of at least one of thes
sub-samples consisting ofp inlier data is to be close to 1. For largen/p, the probability
can be expressed by1− (1− (1− ε)p)s whereε is the fraction of outliers in the region
of interest. Moreover, to improve the statistical efficiency of the crude LMS method, the
final solution is sought by employing the weighted LS method whose weights are defined
to reject outliers as follows.

The initial scale estimateσ0 is calculated first based on the minimum medianM̂ and
some correction factors, i.e.

σ0 = 1.4826(1+5/(n− p))
√

M̂ , (4)

where the factor1/Φ−1(0.75)= 1.4826is selected to guarantee thatmediani |zi |/Φ−1(0.75)
is a consistent estimator ofσ when thezi ’s are distributed as normal distribution of



N(0,σ2) andΦ(x) is the standard normal cdf forx. The multiplication with the factor
1+5/(n− p) is introduced empirically for more feasible estimations in the case of small
samples [13]. The initial scale estimateσ0 is then used to determine an initial weightwi

for each pixel at(xi ,yi):

wi =
{

1 if |r i/σ0| ≤ 2.5
0 otherwise.

(5)

The bound is chosen to be2.5 based on the assumption that there are few residuals
larger than2.5σ for the normally distributed data [13]. The final robust scale estimateσ̂
is then calculated using data in which outliers are rejected by the initial weights as

σ̂ =

√
(

n

∑
i=1

wir2
i )/(

n

∑
i=1

wi − p) . (6)

The final weights are computed by substitutingσ0 by σ̂ in (5) and by using the
weighted LS method

θ = argmin
θ

n

∑
i=1

wir
2
i . (7)

Note that this algorithm searches for a good approximate solution based on the as-
sumption that a majority (more than 50%) of pixels represents a coherent motion cor-
rectly. To support this assumption, the accuracy of the brightness constraint equation is
very important and it relies on the spacial and temporal derivatives of the image intensity.
The partial image derivatives can be calculated accurately by convolving the derivative of
3D-Gaussian function with a large number of images [1]. However due to many practical
reasons, optical flow estimation using only two image frames has usually been preferred.
In such a case, to diminish the effect of crude image derivatives, greater care needs to
be taken in selecting good samples, for example choosingp number of pixels that are
close together or have high gradient magnitudes [11]. In any case, if the observations are
largely contaminated by noise such as large illumination changes, each temporary solu-
tion θ̃ from only p samples will be scattered around the correct one and the probability of
the temporary solution being the correct one will be very low. To obtain a good solutions
from nosy data, we randomly choose a region smaller than the original local area [11],
but useall the pixels in the regioninstead of takingp pixels only. Then, we solve a set of
over-determined equations using the least squares method.

4 Experimental Results

We will first show optical flow results on synthetic and real data for which the ground-
truth is known. By grouping the results into two groups (global and local method), we
will be able to compare general performance of optical flow estimations between these
two paradigms. In particular, we want to showthe sensitivity of the global methods to the
weighting parameters. We will also showthe improvement obtained by using integrated
methodsby comparing their results with those obtained by using separated methods. We
also include the results that showthe superiority of our modified LMS methodby compar-
ing its results with the ones from the standard LMS originally proposed by Rousseeuw
and Leroy.



The global methods for which the results are shown here include the method of Horn
and Schunck [5] (G1); the method of Black and Anandan [3] (G2); the method of Gennert
and Negahdaripour [4] (G3); and our previous integrated algorithm [6] (G4). The meth-
ods of (G1) and (G2) are based on the brightness constancy constraint but the methods of
(G3) and (G4) are based on a varying illumination model. The methods of (G1) and (G3)
use the quadratic estimator whereas the methods of (G2) and (G4) use robust estimators.
For the local methods, we show results with the method of Lucas and Kanade [8] that is
based on the brightness constancy constraint and the LS method (L1); the method based
on the brightness constancy constraint and the standard LMS method (L2-1)1; the method
based on the brightness constancy constraint and our modified LMS method proposed
in this paper (L2-2); the method of Negahdaripour and Yu [9] that is based on the vary-
ing illumination model and the LS method (L3); the integrated method that is based on
the varying illumination model and the standard LMS method (L4-1), and the integrated
method based on the varying illumination model and the modified LMS method proposed
in this paper (L4-2).

We will then show the results on two real image sequences for which the illumina-
tion is not set constant. In the first example, two image frames are taken from an image
sequence where a soda can moves in front of a stationary background. The second exam-
ple consists of a person lifting his arm and rotating his head simultaneously. Both image
sequences incorporate a real illumination change caused by a moving light source which
is located at the right hand-side of the camera. The reason we do not show comparative
results on these images is because the ground truth is not known. However it is instructive
to examine, albeit in a qualitative sense only, the results obtained with distinct algorithms.

To make a fair comparison for different techniques shown here, we apply several mi-
nor modifications to the original implementations. For instance, we do calculation of
image derivatives using two image frames as described in [5] for all the methods used
in this paper. To include large estimation errors in the comparison, we do not limit the
maximum magnitude of the optical flow to be estimated in any methods. We do not use
any confidence measurements that do not contribute to the optical flow computation itself.
For all the local methods, we use the same size and same weighting values in all of the
windows.

(a) (b) (c) (d) (e)

Figure 1: For the Random-dot sequence, (a) first image frame, (b) correct flow. For
the Otte sequence, (c) first image frame, (b) its correct flow. (e) Multiplicative varying
illumination effect.

Figure 1(a-b) show the first image frame and the horizontal component of the correct
optical flow between the first and second image frames of the synthetic random-dot image

1This method is exactly same as the method of Bab-Hadiashar and Suter [1] except that we use image
derivatives calculated from only two image frames as described in [5].



sequence. The second image frame for this image sequence is created by translating the
pixels on the square at the center of the first image frame by one pixel to the right and by
one pixel downward and translating the pixels on the background image by one pixel to
the left and by one pixel upward. To simulate illumination change, the intensity of pixel
in the second image frame is multiplied by a factor that varies linearly from the center of
the image to the corner of the image radially (1.25 at the center and 0.75 at the corner, as
shown in Figure 1(e)), an offset (of10) is then added to the result.

Figure 1(c) is an image frame from the original “Otte” sequence [12] but the size
of image is reduced to half to avoid comparison for erroneous large motions. Figure 1
(d) is a gray scale image representing the horizontal component of the correct optical
flow between the first image frame and the second image frame for the Otte sequence.
The Otte sequence is taken by a camera moving toward a scene and the objects in the
scene are stationary except for a marble block that moves to the left. To simulate varying
illumination, the intensity of the pixels at the next image frame is modified by the same
factors that were used in the random-dot sequence.

Random-dot sequence Otte sequence

Method Avg. Std. Dens. Method Avg. Std. Dens.
G1(25) 20.16 17.73 100 G1(50) 15.84 12.97 100
G1(1.0) 46.85 35.29 100 G1(1.0) 46.22 29.96 100
G2(0.5) 30.62 31.17 100 G2(2.0) 18.30 9.16 100
G2(1.0) 38.98 40.17 100 G2(1.0) 20.21 19.90 100
G3(0.4,100,100) 5.56 7.66 100 G3(0.3,10,10) 10.89 6.11 100
G3(1,1,1) 52.14 0.90 100 G3(1,1,1) 17.57 11.75 100
G4(0.2,10,10) 3.54 10.90 100 G4(0.4,1,1) 9.88 7.23 100
G4(1,1,1) 49.46 4.38 100 G4(1,1,1) 10.11 6.38 100
L1 23.75 23.66 100 L1 24.51 25.40 100
L2-1 10.68 12.25 63.20 L2-1 20.46 17.37 81.28
L2-2 13.18 12.85 61.57 L2-2 12.23 11.98 61.09
L3 5.52 9.70 100 L3 9.09 8.13 100
L4-1 7.17 11.98 100 L4-1 9.06 7.79 100
L4-2 3.89 8.65 100 L4-2 8.75 7.73 100
G1: Horn and Schunck Method, G2: Black and Anandan Method,

G3: Gennert and Negahdaripour Method, G4: Our global integrated method presented in [6],

L1: Lucas and Kanade Method based on the least squares method,

L2-1: The standard LMS Method,

L2-2: The modified LMS-Method proposed in this paper,

L3: Negahdaripour and Yu Method based on the LS method,

L4-1: The integrated method based on the standard LMS Method,

L4-2: The integrated method based on the modified LMS method proposed in this paper

Table 1: Comparative results on the Random-dot sequence and the Otte sequence

For the quantitative comparison, we calculate errors between the estimated values and
the correct values of the optical flow using the error measurement method presented in
[2]. There the authors calculate the errors in optical flow by measuring the angle between
the 3D normalized versions of the correct optical flow vector and the estimated optical



flow vector. The normalized 3D vector is defined as

~v =
1√

u2 +v2 +1
(u,v,1)T (8)

and the angular error is calculated asE = arccos(~vc,~ve) where the normalized 3D vector
~vc corresponds to the correct velocity and~ve to the estimated velocity.

In Table 1, the columns are divided into two parts depending on the image sequence
used. The first part is for the random-dot sequence and the second part for the Otte se-
quence. The abbreviations representing the different methods are expanded at the bottom
of the table. The first column in each part of the table determines the method applied to
calculate the error statistics. “Avg.” and “Std.” denote the mean and the standard deviation
of the error associated with optical flow estimation. “Dens.” denotes the number of pixels
that produce valid value of optical flow divided by the total number of pixels that are used
for the optical flow calculation in the image frame. The number in bracket at the side of
G1 and G2 methods denotes the value of weighting parameter for the motion smoothness.
The numbers at the side of G3 and G4 methods denote the value of weighting parameter
for the motion smoothness, the values of weighting parameters for the smoothness of the
multiplicative radiometric term and for the smoothness of the additive radiometric term
respectively. The first results of the same global method are obtained with manually tuned
parameters. The second results are obtained by un-tuned parameters (i.e., all parameters
are set to 1). For all the local methods, 15 by 15 windows are used and for all the LMS
based methods, 30 sub-samples are used. We note that the results of our local method are
comparable or superior to the result of our global algorithms. Yet the local method does
not require any parameter tuning. We can also verify the superiority of our integrated
approach to the separated approaches by comparing the results of L4-1 and L4-2 with
the results of L2-1 and L2-2. Moreover, the results of L4-2 that uses our modified LMS
method proposed in this paper show clear improvement by the results of L4-1 that uses
the standard LMS methods.

(a) (b) (c) (d) (e)

Figure 2: (a) First image frames. (b) Results obtained by our global method using op-
timally tuned parameters. (c) Results obtained by our global integrated method using
un-tuned parameters. (d) Results obtained by Negahdaripour and Yu method based on
the LS method. (e) Result obtained by our local integrated method based on the modified
LMS method proposed in this paper.

For the real image case, we show results for two real image sequences taken under a
real illumination variation. The first image sequence, Can sequence, shown in the first row
of Figure 2 (a) corresponds to a scene of a stationary background and a can that moves



along the plane parallel to the scene in the foreground. The second image sequence,
Human sequence, shown in the second row of Figure 2 (a) corresponds to a more complex
scene of a stationary background and a human lifting his arms and rotating his head in
the foreground. Two image frames are taken from both image sequences and used for
the calculation of optical flow. Since no ground truth is available for these sequences, the
comparison can only be visual. As we can easily expected from the results of the previous
experiments, results of the methods based on the brightness constancy constraint contain
large errors and are omitted in Figure 2 to save space. Obviously, the results of the global
method are very sensitive to the value of the parameters as expected. Our local method
based on the modified LMS method shows clear improvement from the method based on
the LS algorithm especially at motion boundaries.

5 Conclusion

In this paper, we have presented a local approach for estimating optical flow on image se-
quences recorded under conditions of varying illumination and with large motion discon-
tinuities. Our current local approach is to be contrasted with the global method we used
in our previous work. In the local approach, we integrate Gennert and Negahdaripour’s
varying illumination model and our modified LMS method that is based on the standard
LMS.

The experimental results reported above, show the superiority of our integrated method
to other algorithms based on both global and local methods when illumination changes
significantly from one image to the next. We also presented the advantage of our local
approach by comparing the accuracy of our algorithm with that obtained using global
approaches. We finally showed the improvement obtained with our local approach when
employing the modified LMS algorithm defined in this paper. We have shown this us-
ing statistical comparisons on synthetic image sequences for which the ground truth was
known. A qualitative comparison with two real image sequences was also shown.
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