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Abstract

The principled non-rigid registration ofgroupsof images requires a fully
groupwise objective function. We consider the problem as one of finding the
optimal dense correspondence between the images in the set, where optimal-
ity is defined using the Minimum Description Length (MDL) principle, that
the transmission of a model of the data, together with the parameters of that
model, should be as short as possible. We demonstrate that this approach
provides a suitable objective function by applying it to the task of non-rigid
registration of a set of 2D T1-weighted MR images of the human brain. Fur-
thermore, we show that even in the case when substantial portions of the
images are missing, the algorithm not only converges to the correct solution,
but also allows meaningful integration of image data across the training set,
allowing the original image to be reconstructed.

1 Introduction
There are many methods available for the non-rigid registration of pairs of images (for
a review, see [18]). For some of the target applications of non-rigid registration, such as
comparing to an atlas [2], it is sufficient to consider only pairwise registration. However,
in any application where the statistical analysis of the resulting deformation fields is re-
quired, such as the modelling of biological variability, or of assisting in disease diagnosis
across the population, performing repeated pairwise registrations over the set of images
is, at best, näıve. In order to facilitate useful statistical analysis, the registration of the
group of images needs to be considered as a single problem, so that the parameters of the
warps on all of the images lie in a common manifold. We have previously [9] considered
a method of non-rigid registration that ensures that there is a common set of knotpoints
that define the warps across all of the images. In this paper, we extend that work by
considering a groupwise objective function for non-rigid registration.

In intra-subject registration of medical images there is often some actual physical
process determining the observed deformation, for example, tissue deformation due to
patient position, the insertion of an external object such as a needle, or patient and organ
motion. Alternatively, the deformation may be caused by atrophy, such as in dementia, or
growth, as in a tumour. In either case, the most suitable choice of registration algorithm
is one that closely models the underlying physical process, leading to physically-based
registration algorithms (e.g., [6, 7]), or physically-based models (e.g., [12]) that can be
used to evaluate the results of non-rigid registration algorithms.

However, in inter-subject registration there is no longer a direct underlying physical
process that generates the observed data. We therefore contend that in the absence of
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expert anatomical knowledge1 (i.e., for the case of purelyautomaticregistration), the
meaning of correspondences should be derived purely from the available data (i.e., the
set of images). Further, any statistical inferences that we make about the data should not
depend on hypothetical data-generating processes; an assumption that underlies parameter
estimation techniques such as maximum likelihood. The Minimum Description Length
(MDL) [11] and Minimum Message Length (MML) [17] principles are closely related
approaches [1] to model-selection and statistical inference that satisfy these restrictions.

The MDL principle has previously been shown to give excellent results when applied
to the correspondence problem in shape modelling [5]. However, naı̈ve attempts at ex-
tending the methods described there to images have not been successful [14]. This paper
develops the ideas described in [16], and applies them to the complete problem of group-
wise non-rigid registration of a set of images. The fundamental problem of groupwise
non-rigid registration is to find a set of matching points that are defined across all of the
images and that can be used to bring the images into better alignment. This is precisely
the correspondence problem.

In this paper, we develop the application of the MDL principle to complete images by
considering the transmission of a reference image (initially the mean of the set of aligned
images) together with the parameters of the model that describes the set of deformations
required to transform the reference image into each image in the set, together with any
residual deformations. We begin by considering in detail the link between modelling and
correspondence, and then describe how MDL can be used to provide an objective function
for the non-rigid registration of images. This is followed by experiments showing the
application of the method, and demonstrating that groupwise non-rigid registration can
deal with significant absences in the data, where parts of the images have been removed.

2 Modelling and Correspondence
We will first consider the case of shape modelling. The scenario is that we are given a
training set of shape examples, and we wish to represent all of these shape examples as
specific instantiations of some parametric shape model. Conventional approaches such
as the Statistical Shape Model (SSM) (as used in Active Shape Models [4]), or medial
representations such as MREPS [10], represent the shapes in the training set as deformed
examples of a single reference shape. This means that we have an explicit, consistent
correspondence across all the shapes in the training set. In the case of point-based rep-
resentations such as the SSM, the initial correspondence is provided by means of a set
of manually-placed landmarks on each shape in the training set: this suffers from the
problem that it is a time-consuming and subjective process, as well as being extremely
difficult to perform for 2D shapes (surfaces) in 3D. In volumetric representations such as
MREPS, the correspondence is implicit in the medial representation. Given a consistent
correspondence across the training set, the reference shape is then conventionally defined
as the mean shape across the training set, using an appropriate metric. Given the corre-
spondence and the reference shape, the remaining part of the shape model is the set of
deformations between the reference shape and the training set.

It is usual to first factor out any affine/similarity transformation part of the defor-
mations through the use of some alignment algorithm (e.g., Procrustes Analysis). The

1The problems with obtaining expert annotation are well known – it is subjective, time-consuming, and very
difficult in the case of 3D shapes or images. It is for these reasons that we consider the possibility of performing
automaticregistration without any such annotation. In principle, such annotationcouldbe incorporated into the
MDL framework, just that then we would have a constrained optimisation problem to solve.



remaining non-rigid part of the set of deformations is then usually represented in some
convenient dimensionally-reduced fashion – for example, in the case of the SSM, the set
of shape deformations is represented using a multivariate Gaussian (which then gives a
set of modes of variation). The final shape model then consists of the reference shape, the
parameterised set of non-rigid deformations of this reference shape, and the set of affine
deformations. To allow for the fact that there may be some mismatch between the actual
training shapes and their representation by the shape model, we also allow a set of resid-
ual deformations, which represent this discrepancy between the model representation and
the actual shape.

This modelling approach can be extended to regions of interest in a set of training
images, in approaches such as the Active Appearance Model (AAM) [3]. As previously,
the model-building starts from a set of manually-placed landmarks on the boundary and
interior of the region of interest. The reference now consists of a reference shape, and
the image appearance (pixel values) within the reference shape. The deformations of this
reference required to reproduce each training example now include both a spatial defor-
mation of the reference and a pixel-value deformation of the reference appearance. The
required deformations can be combined into a single statistical model, which allows for
correlations between shape change and appearance change. Note that the sensible combi-
nation of the incommensurate quantities of spatial deformation and pixel-value deforma-
tion into a single model is only possible because we know the correspondence; the scaling
between spatial and pixel-value deformation can be chosen so that both parts have equal
variance. As in the shape case, the model-building process starts from a user-defined
correspondence across the set of training images.

Shape modelling is dependent upon the correspondence of the set
of training shapes – altering the correspondence whilst maintaining the
representation of the shapes will generate different shape models. The
diagram to the right of this paragraph gives a simple example. The sizes
of the points and their shading indicate the correspondence, and so it
can be seen that the correspondence between the top and middle squares
is correct (a rotation of the points in the square of about 60 degrees
clockwise has taken place). The alternative correspondence shown in
the bottom image requires a much more complicated transformation,
which will result in a significantly more complicated shape model be-
ing required to describe a set of such transformations. If we have an
objective function that allows us to compare models, we can – by vary-
ing the correspondence – find the optimal shape model, and hence the
optimal correspondence for a particular set of training shapes. This was
the approach taken in the Minimum Description Length (MDL) [11]
approach to shape modelling [5], where it was found that the resulting
models had improved performance compared to models built using other methods. The
application of the MDL principle to model selection is described in the next section.

In summary, we see that the conventional approaches to both shape modelling and
shape-and-appearance modelling rest on a definition of a dense correspondence across a
set of training examples. In contrast, the aim of automatic non-rigid registration algo-
rithms is to find a meaningful dense correspondence across a set of training images. This
suggests that we should view groupwise non-rigid registration as a modelling problem,
where the sought-for dense correspondence across the training set of images is one that



produces the optimal model. How this model of images is constructed, and the criterion
used to define the optimal model is the subject of the next section.

3 The MDL Principle for Model Selection
We have seen that conventional approaches to modelling represent a set of training ex-
amples as deformations of some reference example. This naturally fits into the MDL ap-
proach to statistical inference when we consider transmitting a dataset (our training set) to
a receiver. Rather than transmitting the data directly, we attempt to reduce the total length
of the transmission by encoding the data using some model. If our data is quantized, this
can obviously be done using a message of some finite length. The optimal encoding of
the data is then defined to be the encoding that has the shortest total transmission length,
which is thedescription length. If we employ a model of the general form described in
the previous section, then the total message consists of the following parts:

• The reference example (For an SSM, this would be just the mean shape.)
• The parameters of the model used to describe the set of deformations of the refer-

ence example (SSM: this would be the set of modes of shape variation.)
• The representation of each training example according to the model (SSM: the set

of shape vectors.)
• Any residual deformations (SSM: the affine transformations and any residual de-

formation.)
The total description lengthL can then be written as a sum of corresponding terms thus:

L = Lref +Lparams+Ldata:model+Lresidual. (1)

3.1 Computing Description Lengths
The actual description lengths for the transmission of one parameter or one piece of data
are computed using the fundamental result of Shannon [13] – if there are a set of possi-
ble, discrete events{i} with associated model probabilities{pi}, then the optimum code
length required to transmit the occurrence of eventi is given by:

Li =− ln pi nats, (2)
where thenat is the analogous unit to thebit, but using a base ofe rather than base 2, so
thate bits≡ 1nat. If our quantized data to be transmitted is encoded according to some
parametric statistical model, this is equivalent to saying that the model assigns a non-zero,
normalised probability toeverypossible quantized data value. Hence, the probability used
in the above equation is the probability of the occurrence of this particular quantized data
value according to the model.

The other case we consider is where we wish to transmit an unbounded, quantized
data value, or an integer. The two are equivalent, as a quantized data value can always be
reduced to an integer. The description length for the transmission of an unsigned integer
can be approximated as follows. Consider a positive integer of the formn = 2k, k∈ Z+,
that, in binary, containsk bits. Hence:

LZ+(n) = k bits= 1+ int(log2n) bits≈ 1
e

+ ln(n) nats, n∈ Z+, (3)

LZ(n) = 2+ int |log2n| bits≈ 2
e

+ ln(n) nats, n∈ Z, (4)

where the second expression for the description length for signed integers contains an
extra bit for the sign.

As an example, we will consider the description length for transmitting a quantized,
pixellated grayscale imageI with NI pixels according to the image histogram of that



image. Suppose that the pixel-values{I(A) : A = 1, . . .NI} are integers in the range[1N],
and that there areNm pixels in the image with the valuem, with occupied bins situated
at positions{mα}. Using this image histogram as the model, this gives the associated
probability p(m) = Nm

NI
. The transmission then consists of the positions of the occupied

bins (assuming a flat distribution over the allowed range), the occupation numbers of each
bin (which allows the receiver to construct the full image histogram), and then finally the
ordered set of actual pixel values in the image, encoded using the histogram as model.
The description length is hence:

Lhist =−∑
α

ln
(mα

N

)
+∑

α
LZ+(Nmα)−

NI

∑
A=1

ln p(I(A)), (5)

which is a form of image encoding that we will use later on.
3.2 The MDL Algorithm for Image Registration

The aim of non-rigid registration is to define a con-

Figure 1: The set of transfor-

mations between reference and

image frames.

sistent spatial correspondence across the image set. We
thus need to consider the spatial transformation between
the original image planes/volumes and that of the ref-
erence image. The transformations between frames in-
volved in the encoding and decoding processes are sum-
marised in the diagram in Figure 1. We have a set
of training imagesI1, . . . Ins and a reference imageIref.
There is also a set of diffeomorphic transformations
{ti} between the image plane/volume of the reference
image and the image plane of each image in the set.

It is this set of transformations that defines the con-
sistent dense correspondence across the set of images.
Defining a transformationti also defines the pullback transformationt inv

i . Note however
that it isnot strictly required thatt inv

i is theexactinverse ofti , only that it is also diffeo-
morphic, and that the transmitter and receiver both use the same algorithm to compute
the set{t inv

i } from the set{ti}. The set{ti} on its own is enough to define a consistent
correspondence across the set, allowing us to find, for each point in the reference, the set
of corresponding points across all the images. However, without anexactinverse,t−1

i say,
we cannot find all the points corresponding to a point in imageIi .

Encoding the set of images proceeds as follows. The transmitter first decides on a set
of transformations{ti}. She then constructs the set{t inv

i }, and maps each imageIi into
the plane/volume of the reference. The image values fromIi are then resampled onto
the regular gridXref of the reference to give the imagẽIi(Xref) (we assume that transmitter
and receiver have previously agreed on a resampling scheme). The full set of resampled
images in the frame of the reference{Ĩi(Xref)} is then averaged to create the reference
imageIref(Xref). This reference image is transformed to the image plane of each imageIi in
turn, and resampled onto the regular image gridXi to give the imagẽIref(Xi), and the dis-
crepancy image between the warped, resampled reference and the imageIi is computed,
I disc
i (Xi) = Ii(Xi)− Ĩref(Xi). The transmission then consists of the reference imageIref(Xref),

the set of parameterised transformations{ti}, and the set of discrepancy images{I disc
i (Xi)}.

To decode theith image, the receiver decodes the reference imageIref(Xref), the warp
ti , and theith discrepancy imageI disc

i (Xi), then applies the transformation to the reference
image, and resamples the warped reference on the regular image grid of imageIi (which
we will assume is the same size as the grid of the discrepancy image) to create the image



Figure 2: Top Row: The group of 5 images to be aligned, with the reference image

knotpoints positions superimposed, Second Row:The description length divided by the total

number of pixels in the group of images as a function of iteration number, Bottom Row: The

mean/reference image at the start, and at the 2nd, 4th, 6th, 8th, and 10th iterations.

Ĩref(Xi). Adding the discrepancy imageI disc
i (Xi) to the imagẽIref(Xi) then allows the original

imageIi(Xi) to be reconstructed exactly. The description length for this encoding is given
symbolically by:

L = Ltrans({ti})+L(Iref(Xref))+
ns

∑
i=1

L(I disc
i (Xi)) , (6)

whereLtrans({ti}) is the message length for transmitting the set of quantized parameters of
the transformations, plus the set of quantization scales.

So, in this formulation, the only free parameters of the encoding are the set of trans-
formations{ti}. The optimum correspondence is hence that given by the set of transfor-
mations that optimise the description length given in equation (6). The optimisation can
be performed efficiently by optimising the transformationti for each image in turn, and
repeating until convergence is reached. As only one transformation is varied at a time,
we need only re-calculate the pullback mappingt inv

i for this particular transformation. The
contributions of the other images to the reference remain unchanged. Although, superfi-
cially, this may seem to amount to successive pairwise registration to the reference, note
that the MDL objective function is truly group-based: changing the transformation for one
image in the set changes the reference image, and hence changes the discrepancy images
for all the images in the set. In the experiments we describe below, the transformationti
to be optimised at a given iteration was chosen at random.

4 Experiments
4.1 Non-Rigid Registration

As an example, we take a set ofns = 5 2D axial T1 MR slices of human brains, which have
already been affinely aligned. The images are 8-bit grayscale images of sizeNI = 100×
100. We take as our parameterised set of transformations the polyharmonic Clamped-
Plate splines (CPS) [15], which have successfully been used in non-rigid registration [8].
The CPS interpolates the motion of a set of knotpoints, hence the parameters of a trans-
formation are the initial and final positions of those knotpoints. The boundary conditions
on these splines are that the transformation vanishes smoothly on a the surface of a ball,



which in our case (2D), we take to be the circumcircle of the images. We choose to use
the biharmonic CPS. Transmitting a spatial deformation is then equivalent to transmitting
the positions of a set of knotpoints. We quantize the knotpoint positions to an accuracyδ,
with a range of possible positions equal to the size of the image, and a flat distribution over
this range; this then comprises the probabilistic model for the encoding of the knotpoint
positions. We encode the reference image using the histogram encoding given earlier (5)
with N = 256 since we have 8-bit grayscale images. Because the number of training
examples is small, we do not assume any relation between the discrepancy images for
different training examples, and instead we transmit each discrepancy image according to
its own histogram, shifting the data so thatN = 512for the discrepancy images.

Following [8], we first generate a set ofnk = 10 equi-angularly spaced knotpoints
around the skull for each image. We then take the average positions of these points across
the set as our reference image knotpoint positions{xref

α ,yref
α}, which remain fixed, and

provide us with our spatial reference. For the purposes of illustration, the image knotpoint
positions were initialised to the reference knotpoint positions (as is shown in Figure 2),
so that the transformation starts at the identity. We take each image in turn, and then take
one knotpoint at a time, and optimise its position on this image. We use a fixed position
accuracy ofδ = 0.05pixels.

As can be seen in Figure 2, as the optimisation proceeds, the reference image sharp-
ens – after 10 iterations (that is, 2 passes through each image), we see that the skulls are
aligned, giving a clear distinction in the reference image between skull, CSF, and the brain
surface. These are the structures in the vicinity of the knotpoints. The brain structures
far from the knotpoints (i.e., the ventricles and sulci) are only approximately aligned, as
we would expect. Note also that the final reference does not have the same skull shape
as any of the originals. In these results we have only shown the first stage in the regis-
tration – as in [8], the registration would be refined by adding more knotpoints, and then
re-optimising.

4.2 Optimising the Reference Image
Our choice to use the continually-updated mean as the reference image was initially mo-
tivated by the analogy that we drew with the standard approaches to the reference in
shape-modelling. We could have used one of the training examples itself as the reference
image – however it is well known that changing the choice of reference can greatly change
the final results when it comes to atlas construction. Bhatia et al. [2] perform groupwise
registration to a varying spatial reference, yet use a fixed example from the training set
as the intensity reference. The problem with such a fixed choice of intensity reference is
illustrated in the following example.

We take a seed image of a brain slice, and generate a training set of transformed
versions of this seed image by translating and re-sampling. We then obscure part of
the brain in each training example, as is shown in Figure 3. It is obvious that using
any of these training examples as the intensity reference (e.g., as in [2]) will give poor
results, since none of the training examples contain all the structures present in the seed
image. However, as can be seen from the Figure, aligning to the continually-updated
mean produces good results, with all the examples being brought into the correct relative
alignment. Note that the final spatial reference is not fixed, but will vary depending on
the order in which the transformations of the training examples are optimised.

Note, however, that the MDL formulation is not limited just to the choice of the mean
of the aligned images as the intensity reference – the values of the reference image are



Figure 3:Top Row: The set of training images, Other Rows: The reference image as the

registration progresses, with the value of the objective function (the total description length

for the set in nats).

Figure 4: The mean and median of the aligned training set from Figure 3 compared to

the seed (original) image. The value of the total description length for the two choices of

reference is given below the image.

a part of the model, and so could theoretically be optimised over. This is illustrated
in Figure 4, where we take the set of transformations given in the previous Figure, but
rather than computing the mean, we instead compute the median of the aligned training
examples. As can be seen, this not only gives a much smaller description length, but
also gives a reference image that is much closer to the original seed image. We would
not necessarily expect to be able to reconstruct the reference image exactly, since the re-
sampling will introduce some blurring. This result for the refined reference image shows
not only that we are able to correctly align a set of images, despite missing structures
in each of the images, but also that the same MDL approach has allowed us to correctly
extract theunionof structures from the training set, not just thecommonalityof structure.
This suggests possible links to the problem of super-resolution, but space does not permit
this point to be pursued further here, although it will be considered in future work.

4.3 Comparing Different Classes of Model
In the examples given above, we used a single class of model, and showed that optimis-
ing the transformations{ti} gave us a reasonable registration, whilst also optimising the



Figure 5: Top Row: The 2 seed images, and the absolute difference between them. Bottom
Row: The reference images for the two sub-sets, and the combined set, with the total

description length in nats.

pixel-values of the reference image enabled us to integrate information across the training
set. Both of these results can be seen as specific examples of optimising the parameter
values for a given class of model. However, the MDL approach also allows us to compare
different classes of model, since the description lengths can be compared directly.

This is illustrated in Figure 5. We take two 2D129×129seed images from the Brain-
Web2 database, chosen to be slices that are close together, so that they show the same
structures. We generated two subsets of images by translating and re-sampling each seed
image as before, united them to create our final training set. The results shown in Fig-
ure 5 compare describing the whole training set using a single reference to describing
each subset separately, using the same registration algorithm as earlier. If we compare
the description lengths for the case of two reference images as opposed to just one, the
summed cost with two reference images is4%lower than the cost for the combined trans-
mission – this is as expected, since the combined training set really only contains two
independent images, that is, the original seed images.

5 Discussion & Conclusions
This paper has described a novel objective function that enables true groupwise non-rigid
registration. The objective function is based on the Minimum Description Length (MDL)
principle, and in previous work [16] we have shown that all of the common objective
functions used for image registration can be described as modelling choices within the
MDL framework. Thus, although in our examples we have demonstrated results using
only one imaging modality, the extension to multi-modal images involves merely a change
of modelling choice. Similarly, the extension to non-scalar valued images is also possible.

In the experiments that we present in this paper the reference image is chosen to be the
average image of the aligned training set (we consider the mean and median averages).
We could also have refined this reference image using the MDL objective function, which
may have further improved the results – this will be investigated in future work. The
experiments that we have presented have clearly demonstrated the power of the method

2http://www.bic.mni.mcgill.ca/brainweb/



in that even when different regions of the images are masked off, the algorithm still con-
verges to the correct answer, since there is sufficient information in the entire group. This
is only possible because the reference image for both spatial and intensity information is
a function ofall of the images in the group, in contrast to work such as [2]. This paper has
demonstrated a successful proof-of-concept for the groupwise objective function that we
propose. Demonstrating the method on multi-modal images and in 3D does not provide
any theoretical difficulties, and will be followed-up in the future.
Acknowledgements.Our thanks to A. Fitzgibbon for suggesting the missing data exper-
iment.
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