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Abstract
In this paper we suggest a modification to the Beckmann-Kirchhoff model

of rough surface reflectance that can be used for surfaces of intermediate
roughness. One of the problems with the existing Beckmann model is that
it fails for large angles of incidence. This problem was overcome for rough
surfaces by Vernold and Harvey who use a Lambertian form factor. Here we
take this work one step further by using a Fresnel coefficient to account for
subsurface reflectance attenuation. This study also aims to show the existing
modelling gaps between different variants of the Beckmann model.

1 Introduction
The modelling of rough surface reflectance is important in both computer vision and com-
puter graphics, and has been the subject of sustained research activity for some four
decades. In fact the quest for a reflectance model that can accurately account for the
observed surface radiance under a variety of roughness conditions, and a variety of view-
ing geometries has proved to be an elusive one. Surface roughness can be characterised
in a number of ways. For very-rough surfaces, one approach is to use a model which
describes the distribution of surface wall cavity angles [5]. For slightly-rough surfaces,
i.e. ones that present a shiny appearance, roughness can be modelled using the angular
distribution of microfacets [8]. An alternative that can capture both effects is to describe
the roughness phenomenon using the variance and the correlation length of variations in
the surface height distribution [11, 3].

In computer vision there have been a number of recent attempts to model rough sur-
face reflectance in a phenomenological way. These models attempt to account for rough-
ness as departures from Lambert’s cosine law. For instance, Oren and Nayar [5] use the
surface cavity picture to model very-rough surfaces. The departures from Lambert’s law
are greatest at large light scattering angles. However, this model has been criticised due
to the unrealistic nature of its isotropy assumption by van Ginneken et al. [11] who have
recently developed a model that can be used to predict reflectance from isotropic rough
surfaces. The parameters of their model are the surface roughness measured in terms of
the RMS slope, the albedo, and the balance between the diffuse and specular components.
For slightly-rough or shiny surfaces, Wolff [9], on the other hand, has a model motivated
by physics. Here refractive attenuation in the surface-air layer is modelled by multiplying
Lambert’s cosine law by two Fresnel terms. One of these accounts for light incidence
and the second for reflection. For medium roughness, Wolff, Nayar and Oren [10] have
combined the two methodologies by assuming that reflection from each microfacet in the
Oren-Nayar model follows the Fresnel model which is used in the Wolff model.

However, it is interesting that some of the earliest work in the area was undertaken
by Beckmann [1], who used the Kirchhoff integral to model the wave scattering of light
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from rough surfaces characterised using the variance and correlation length of the sur-
face relief distribution. The model is mathematically quite complex, and is hence not
well suited for analysis tasks of the type encountered in computer vision. In particular, it
is not a simple modification of Lambert’s law. However, He et al. [3] exploited an im-
proved representation of the Kirchhoff integral for surface synthesis in computer graphics.
They proposed a comprehensive model that incorporates complex factors including sur-
face statistics, sub-layer scattering, and polarization. Also, Stam [7] has recently applied
the Kirchhoff approach to include diffraction effects in surface rendering. Unfortunately,
the Beckmann model fails to account for the observed radiance at large scatter angles due
to energy absorbtion, self shadowing and multiple scattering effects. Some of the prob-
lems have recently been overcome by Vernold and Harvey [12] who have used a simple
Lambertian form factor to modify Beckmann’s predictions. Moreover, the B-K model
provides closed-form solutions only for slightly-rough and very-rough surfaces.

The aim in this paper is to report a new variant of the Beckmann model that can be
applied to surfaces of intermediate roughness. Our idea is to extend the model to account
for the subsurface refractive attenuation of light prior to wave scattering. This effect can
be accommodated by multiplying the Kirchhoff scattering kernel by a form factor that
depends on the Fresnel reflecton coefficient. In this study, we use a correction term,
similar to that used by Wolff [9], in place of the Lambertian term factor of Vernold and
Harvey. This model has a number of advantages. first, it allows the Beckmann model
to be used for conditions of intermediate roughness. Second, it provides a good fit to
reflectance measurements.

2 Beckmann-Kirchhoff scatter theory
The Beckmann-Kirchhoff (B-K) theory attempts to account for the wave interactions of
light with rough surfaces. The starting point is Kirchhoff’s integral which gives the scat-
tered light-field amplitude. Beckmann’s contribution was to show how to apply the theory
to rough surfaces, and how to obtain simplifications to the Kirchhoff integral under dif-
ferent roughness conditions. The details of the theory are comprehensively described in
the monographs of Beckmann and Spizzichino [1], and by Ogilvy [4]. By requiring that
the surface has both a Gaussian height distribution and a Gaussian correlation function,
according to the B-K theory the total scattered intensity is given by

I(θi,θr,φr) = I0e−g +
πT 2F2(θi,θr,φr)e−g
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The incident beam has zenith angle θi and azimuth angle φi = π , and the reflected
beam has zenith angle θr and azimuth angle φr (on local tangent planes). From trigonom-
etry it follows that vx = k(sinθi − sinθr cosφr), vy = −k(sinθr sinφr), vz = −k(cosθi +
cosθr), v2

xy = v2
x + v2

y , g = σ 2v2
z and k = 2π/λ , where λ is the wavelength. The parame-

ter σ is the root-mean-square (RMS) height deviation of the topographic surface features
about the mean surface level. The height values are generally measured at equally spaced
digitized data points. The correlation length T is defined as the lag-length at which the
Gaussian correlation function drops to 1/e of its maximum. The geometrical factor is

F(θi,θr,φr) = (1+ cosθi cosθr − sinθi sinθr cosφr)/cosθi(cosθi + cosθr) (2)

The quantity g has been used in the literature to divide surfaces into three broad cat-
egories. These are a) slightly-rough (g � 1), b) moderately-rough (g ≈ 1) and c) very-
rough (g � 1) surfaces. The parameter A is the area of a plane sheet on which the scat-



tering coefficient I0 is defined after integration of the mean scattered field equation [1].
The first term in Eq. (1) determines the specular component. The scattering coefficient I0
vanishes everywhere except near the direction of specular reflection. The second term, i.e.
the infinite series, determines the diffuse component. The number of terms that need to be
used in the summation depends on the roughness with respect to the wavelength. When
we consider the specular direction (θi = θr and φr = 0), then both vx and vy vanish and
F = 1. Hence the optical intensity is proportional to exp(−g). We have recently shown
[6] how to use this simple equation to estimate the roughness for slightly-rough surfaces.

The first interesting case arises when the surface is slightly rough (g� 1), and so the
series in Eq. (1) converges rapidly. In practice, only the first term needs to be considered
and the diffuse intensity becomes

Id(θi,θr,φr) ≈ (πgT 2F2/A)exp[−(g+T 2v2
xy/4)] (3)

The second interesting case arises when the surface is very rough (g � 1) when
compared to the test wavelength. Under these conditions the specular term becomes in-
significant and the total (or diffuse) intensity is

I(θi,θr,φr) ≈ (πF2T 2/Av2
z σ2)exp(−v2

xyT 2/4v2
z σ2) (4)

We also simplify the model for the case when the angle between the light-source
direction ~L and the viewing direction ~V is small, i.e. ~L ≈ ~V , and so θi = θr = θ and
φr = π . In this case, the B-K model for very-rough surfaces (Eq. 4) reduces to

I(θ ) ≈ (T 2λ 2/16πAσ 2 cos6 θ )exp(−T 2 tan2 θ/4σ 2) (5)
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Figure 1: Normalized radiance versus θi using (a) the original (Eq. 5) and (b) the modified (Eq. 6)
B-K model for several values of η = (T/σ)2; Lambert’s law (dashed).

2.1 Modified Beckmann-Kirchhoff model
The failure of the B-K theory to handle wide-angle scattering and large angles of inci-
dence has been highlighted by several authors [2, 3, 4]. To solve this problem, Vernold
and Harvey [12] have recently replaced the geometrical factor F 2 used in the B-K model
with a Lambertian term that depends only on the cosine of the incidence angle cosθi. This
modification gives reasonable experimental agreement with scattering data for rough sur-
faces at large angles of incidence and large scattering angles. The modification relies on
empirical and phenomenological arguments. However, this does not diminish its prag-
matic use since it includes some effects (corresponding to non-paraxial angles) which are
not included in the original B-K model. Making this replacement, the Vernold-Harvey
(V-H) modification to the B-K model for very-rough surfaces for the case of~L ≈~V is

I(θ ) ≈ (T 2λ 2/16πAσ 2 cosθ )exp(−T 2 tan2 θ/4σ 2) (6)
Hence, the 1/cos6 θ behavior of the original B-K model (Eq. 5) is replaced by a

slower 1/cosθ behavior. Fig. 1 illustrates the effect of this different behavior for very-
rough surfaces. The different curves in each panel show the normalized radiance as a



function of the incidence angle for different values of η = (T/σ)2. The dashed curve in
each panel is the prediction of Lambert’s cosine law. Panel (a) is for the original B-K
model (Eq. 5), while panel (b) is for the modified B-K model of Vernold-Harvey (Eq.
6). Panel (a) demonstrates that the original B-K model diverges significantly from the
Lambertian curve for large angles of incidence. Here, the normalized radiance peaks at
large scatter angles for small values of η due to the 1/cos6 θ term. Panel (b), on the
other hand, shows that the V-H modification to the B-K model does not exhibit these
problems. From the different curves it is also clear that the larger the surface roughness σ
with respect to correlation length T , the higher the normalized radiance. In particular, for
η = 2, the brightening effects are relatively moderate compared to the Lambertian curve.

3 Phenomenological reflectance models
In this section we review the models of Oren and Nayar [5] and Wolff [9] briefly.

3.1 Oren-Nayar model for rough surfaces
Oren and Nayar have developed a diffuse reflectance model for rough surfaces [5]. They
have used the roughness model proposed by Torrance and Sparrow [8] that assumes the
surface is composed of extended symmetric V-shaped cavities. Each cavity consists of
two planar facets. The width of each facet is assumed to be small compared to its length.
The roughness of the surface is specified using a probability distribution function for the
facet slopes. Finally, each facet is assumed to follow the Lambertian model. Here we
focus on their qualitative model in which interreflections are ignored. According to this
model, for a point on a rough surface with a roughness parameter σα , illuminant incidence
direction (θi,φi) and reflectance direction (θr,φr), the surface radiance is

Lr(θi,θr,∆φ ;σα ) = (ρE0/π)cos(θi){A+Bmax[0,cos(∆φ)] sin(α) tan(β )} (7)

The parameters A and B (which are dimensionless) are only dependent on the sur-
face roughness σα (which is measured in degrees or radians). Specifically A = 1.0−
0.5σ 2

α/(σ 2
α +0.33) and B = 0.45σ 2

α/(σ 2
α +0.09). Also, ∆φ = φr − φi, α = max[θi,θr]

and β = min[θi,θr]. It is important to note that the model reduces to the Lambertian
case when σα = 0. Finally, the parameter ρ represents the surface albedo (reflectivity)
which is assumed to be constant. Physical significance of the Oren-Nayar model becomes
clearer if we simplify to the case where~L ≈~V (i.e. θr = θi = θ and ∆φ = 0). Under such
conditions we can approximate the O-N model by making the substitutions cos(∆φ) = 1
and α = β = θ . As a result, the simplified surface radiance (for ρ = 1) is

Lr(θ ) = Acos(θ )+Bsin2(θ ) (8)
Hence, the correction to Lambert’s law is additive and proportional to sin2 θ . This

term is greatest at the occluding boundary, and hence results in limb brightening. Fig. 2.a
shows the radiance versus the incidence angle for different values of σα in Eq. (8). The
effect of increasing the roughness is to make the radiance function flatter with incidence
angle. Hence, the contrast between the limb and the remainder of the object is reduced.

3.2 Wolff model for smooth surfaces
Wolff has developed a physically motivated model for diffuse reflectance from smooth
surfaces [9]. The model accounts for subsurface refraction using a Fresnel attenuation
factor, which modifies a Lambertian radiance function in a multiplicative way. According
to this model, the surface radiance is given by

Lr(θi,θr,n) = ρLi cos(θi)[1− f (θi,n)]{1− f (sin−1[(sinθr)/n],1/n)} (9)



The attenuation factor, 0 ≤ f (αi,n) ≤ 1.0, is governed by the Fresnel function

f (αi,r) = [sin2(αi −αt)/2sin2(αi +αt)][1+ cos2(αi +αt)/cos2(αi −αt)] (10)

The transmission angle αt of light into the dielectric surface is given by Snell’s law:
r = (sinαi)/(sinαt) ⇒ αt = sin−1[(sinαi)/r] (11)

The parameter n is the index of refraction of the dielectric medium. When light is
transmitted from air into a dielectric r = n and αi = θi. However, when transmission
is from a dielectric into air, then r = 1/n and αi = sin−1[(sinθr)/n]. The Wolff model
deviates from the Lambertian form when the Fresnel terms become significant. Almost all
commonly found dielectric materials have an index of refraction, n, in the range [1.4,2.0].
As a result the Fresnel function is weakly dependent upon the index of refraction for most
dielectrics. The value of the scaling factor ρ is very nearly constant over most incidence
and reflectance angles [9]. We can also simplify the Wolff model to the case when~L ≈~V .
When θr = θi = θ the two Fresnel terms are identical and the radiance simplifies to

Lr(θ ,n) = cos(θ )[1− f (θ ,n)]2 (12)
The Fresnel term has the effect of depressing the radiance for near-normal incidence.

In Fig. 2.b we plot the radiance versus incidence angle using the simplified radiance
function (Eq. 12) for different values of n. The greater the index of refraction, the greater
the reduction in the near-normal reflectance.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

Incidence angle (radians)

Ra
di

an
ce

0.05
0.2

0.4

0.6

0.8

1.0

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Incidence angle (radians)

Ra
di

an
ce

1.4

1.5
1.7

1.9
2.0

(b)

Figure 2: Radiance versus incidence angle (radians) using (a) the Oren-Nayar model (Eq. 8) for
several values of σα (radians), and (b) the Wolff model (Eq. 12) for several values of n.

4 Comparisons
In this section, we compare the two variants of the B-K model described earlier with
the Oren-Nayar (O-N) model and with the Wolff model (Fig. 3). We compare the O-N
model with the modified B-K model for very-rough surfaces. However, it should be noted
that the surface slope parameter in the B-K model (σ/T ) is a physics-based parameter
and does not convey the same meaning as its counterpart, i.e. σα , in the O-N model.
There is no roughness parameter appearing in the Wolff model and the changes caused by
varying the index of refraction n are very small. Nonetheless, we compare this model with
the modified B-K model that applies to slightly-rough surfaces. These comparisons are
shown in Fig. 3 for the case of~L ≈~V . In both panels of the figure we plot the normalized
radiance versus the incidence angle using different models. The dash-dot curve in each
panel corresponds to the Lambert’s cosine law. Fig. 3.a shows the curves for both the
modified B-K model (Eq. 6, solid curve) and the O-N model (Eq. 8, dashed curve).
Here, we use σ/T = 1.5 and σα = 20◦. The values are chosen so that the shapes of the
different distributions are roughly comparable. The main points to note from this plot are



as follows. First, the O-N model and the modified B-K model are close in form for small
angles. Second, the modified B-K model tends to zero as θ approaches π/2, while the
O-N model does not tend to zero due to the Bsin2 θ term. This limb brightening effect
is a consequence of the interdependence of A and B, and only vanishes if σa = 0. The
modified B-K model, on the other hand gives zero radiance for θi > 73◦. Hence, the two
models result in quite different behaviours at large angles of incidence.
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Figure 3: (a) Comparison of the modified B-K model (Eq. 6) with the Oren-Nayar model (Eq. 8)
for σ/T = 0.6 and σα = 20◦; (b) Comparison of the modified B-K model (Eq. 3) with the Wolff
model (Eq. 12) for σ = 0.04µm, T = 0.5µm, n = 1.4 and λ = 0.5µm.

Since Wolff does not have an explicit roughness parameter in his model (Eq. 12),
comparing the B-K model and the Wolff model is not straightforward. The reason for
this is that although the shape of the radiance curves for the modified B-K model vary
significantly as the roughness parameters σ and T , and also the wavelength λ are varied,
in the case of the Wolff model the changes brought about by varying the index of refraction
parameter are small. However, in Fig. 3.b we show the modified B-K model for slightly-
rough surfaces (Eq. 3) using σ = 0.04µm, T = 0.5µm and λ = 0.5µm in the same plot
where we show the Wolff model using n = 1.4. Despite considerable differences between
the two models, in the next section we show how these models can be combined to bridge
the existing gap between different variants of the modified B-K model.

5 Fresnel correction
It is well known that the B-K model cannot handle surface self-shadowing and multi-
ple scattering [2]. In Section 2.1, we described how the V-H modification improves the
reflectance predictions of the B-K model for large incidence and scattering angles. How-
ever, the model is also limited to very-rough or slightly-rough surfaces. In this section,
we examine the effect of combining the Fresnel coefficient and the B-K model to develop
a model that is applicable to surfaces of intermediate roughness. Although the B-K model
[1] provides closed-form equations for slightly-rough (g � 1, Eq. 3) and very-rough
(g � 1, Eq. 4) surfaces, this is not the case for moderately-rough surfaces (g ≈ 1).

The Fresnel coefficient has been widely used to account for subsurface scattering.
For instance, Wolff [9] has used it to correct the Lambertian model for smooth surfaces.
Torrance and Sparrow [8] have included the Fresnel coefficient in their specular intensity
model. It is also used in the complex reflectance model of He et al. [3] which attempts to
account for a number of effects including subsurface scattering. Our approach is similar to
that followed by Wolff et al. [10] which combines the Fresnel term with the Oren-Nayar
model to develop a model for moderately-rough surfaces. We exploit the Fresnel model
used by Wolff (Eqs. 9-11) which includes the effects of both incidence and reflectance



angles. Specifically, the geometrical term F2 in the B-K model for very-rough surfaces
(Eq. 4) is replaced by a Fresnel correction term to produce the corrected B-K model.
Whereas Vernold and Harvey [12] have replaced the F2 term by cos(θi), we replace it by
the factor cos2(θi) (which compensates for the lack of energy conservation) multiplied by
two Fresnel terms. The correction term is

µ(θi,θr,n) = [1− f (θi,n)]{1− f (sin−1[(sinθr)/n],1/n)}cos2(θi) (13)

The correction hence combines the advantages delivered by the V-H modification [12]
with some additional ones too. The B-K model for very-rough surfaces (Eq. 4) is appli-
cable as long as the condition g � 1 holds. However, it is not precisely clear for which
values of g this condition is violated. For slightly-rough surfaces, on the other hand, the
condition for applicability of the B-K model (Eq. 3) is that g � 1. Again, there is no
precise boundary for this condition to hold. In conclusion, the condition for switching
from one equation to another is ambiguous and causes practical problems, specifically
when the surfaces under study are of the medium or unknown roughness. This problem
may be overcome if the Fresnel corrected form of the B-K model (corrected B-K model)
is used instead over a wider range.
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Figure 4: Normalized radiance versus θi using: (a) the modified B-K model for Very-Rough
surfaces, the corrected B-K model for Moderately-Rough surfaces and the modified B-K model
for Slightly-Rough surfaces for θr = 0 where σ = 0.05µm, T = 0.25µm and λ = 0.7µm; (b) the
Oren-Nayar (O-N), Wolff and combined (W-N-O) models for~L ≈~V where σα = 10◦ and n = 1.4.

One of the problems caused by this ambiguity is that under conditions where θr = 0,
and for values of RMS roughness σ and correlation length T where 0.1 < g < 0.5, the scat-
tered intensity predicted by the B-K model for slightly-rough surfaces may become higher
than that for very-rough surfaces. This is a phenomenon which is supported neither by
physical nor by geometrical optics. One example for this situation is when σ = 0.05µm,
T = 0.25µm and λ = 0.7µm, which gives g ≤ 0.4. Here it is not clear which of the con-
ditions g � 1 or g ≈ 1 is applicable. This problem is shown in Fig. 4.a. For this case,
the scattered intensities predicted by the modified B-K model for both slightly-rough and
very-rough surfaces for most incidence angles are not reliable. However, when the cor-
rected B-K model is used, the predictions of scattered intensity for most incidence angles
are reliable. We also show the combined model of Wolff et al. [10] in Fig. 4.b for the
case of~L ≈~V . Here, for the Oren-Nayar model, we use σα = 10◦ which corresponds to a
moderately-rough surface. For the Wolff model, the index of refraction is set to n = 1.4.
Finally, the combined model of Wolff-Nayar-Oren uses both σα = 10◦ and n = 1.4. Both
plots of Fig. 4 show how the Fresnel term can be combined with reflectance models for
rough surfaces and also results in alternative models for moderately-rough surfaces.



There may be other difficulties when deciding which variant of the B-K model ap-
plies to a surface. Firstly, the quantity g = [(2πσ/λ )(cosθi + cosθr)]

2, which is used
to distinguish between three categories of rough surfaces does not depend on the corre-
lation length T . However, the parameter which controls the shape of the variants of the
B-K model for very-rough surfaces is not the RMS roughness σ alone. Instead it is the
slope parameter, i.e. σ/T . Hence, a value of σ which gives a g � 1 may be associated
with surfaces with different values of T and σ/T . Secondly, in contrast to the case for
slightly-rough surfaces, the shape of the scattered intensity curve for very-rough surfaces
does not change by changing the wavelength λ . However, since g is proportional to 1/λ 2,
changing λ may change the category into which the surface falls while σ and T are fixed.

To compare the models, we replace the geometrical term F 2 in the B-K model for
very-rough surfaces (Eq. 4) once by our correction term, i.e. µ(θi,θr,n), and once by the
V-H modification term, i.e. cosθi. In Fig. 5, the plots show the normalized radiance versus
incidence angle for a typical RMS slope value σ/T = 0.6. We perform the comparisons
for two different illumination conditions. Panel (a) of the figure is for the case of~L ≈~V ,
i.e. θi = θr and φr = π , whereas panel (b) is for the case of θr = 0 and 0 ≤ θi ≤ π/2.
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Figure 5: Normalized radiance versus θi for (a) θr = θi and φr = π , and for (b) θr = 0 and
0 ≤ θi ≤ π/2, by applying the Vernold-Harvey modification (solid) and our Fresnel correction
(dashed) terms to the B-K model of Eq. (4) where σ/T = 0.6.

In both plots, the radiance curve corresponding to our correction term is lower than
that corresponding to the V-H modification. However in panel (b) where θr = 0 the dif-
ference between the two curves is higher. The main reason for this is that the V-H mod-
ification term which is identical to the cosine Lambert’s law does not depend on the re-
flectance angle. However, our correction term contains both a Fresnel term for incidence
and a Fresnel term for reflectance angle. The effect of these Fresnel terms are different
for different illumination conditions. When θr = 0, the Fresnel term corresponding to θr
is fixed and only the Fresnel term corresponding to θi varies as θi varies. However, when
θi = θr = θ , the Fresnel terms are identical and both vary as θ varies. Again, in panel
(a) where ~L ≈ ~V , both variants of the B-K model fail for large angles of incidence and
reflectance. However, this behaviour does not occur in panel (b) where θr = 0.

6 Experimental results
In this section we experiment with samples of sandpaper and wallpaper as moderately-
rough surfaces. These surfaces have been illuminated using a single collimated tungsten
light-source with a parallel beam. However we used a blue filter which provides a single
wavelength of λ = 0.4µm. The light-source was placed far away from the objects and
collimated using a cylinder. The camera was focused automatically while the aperture
ratio was set manually. Both the viewing direction ~V (optical axis of the camera) and the



light-source direction~L are approximately aligned with the z axis.
Under these conditions, we capture 18 images for each surface by rotating the surface

from θi = 0 to θi = 90◦ with intervals of 5◦. Next, we find a mean value for each image
by averaging the grey-scale values in a window containing sufficient number of pixels.
We show some of the images of sandpaper corresponding to θi = 0,10◦, ..,60◦ in Fig. 6.
As θi increases the width of images become smaller until at θi ≈ 90◦ the grey-scale level
drops to zero and no part of the surface samples are visible. Using the mean brightness
values obtained from the real-world data we plot the normalized radiance versus incidence
angle as shown in both panels of Fig. 7 by solid curves. To compare the data with different
variants of the B-K model, we need to estimate the roughness parameters for each surface.

Figure 6: (a-g) Images of sandpaper samples for θi = 0,10◦,20◦, ..,60◦, respectively.
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Figure 7: Normalized radiance versus θi (~L ≈ ~V ) using: real-world data for sandpaper and wall-
paper, the corrected B-K model for moderately-rough surfaces, the Vernold-Harvey modification to
the B-K model for slightly-rough, and, for very-rough surfaces.

Here we use our method described previously in [6] to estimate the surface slope m =
σ/T for each surface. The method uses the modified B-K model for very-rough surfaces
together with two images of each surface taken under off-normal illumination from two
different incidence angles. The estimates are m = 0.63 for the sandpaper and m = 0.6 for
the wallpaper. Since we can not estimate σ and T separately, we use σ = 0.063µm and
T = 0.1µm for the sandpaper and σ = 0.06µm and T = 0.1µm for the wallpaper which
give the best fit of the modified B-K model for slightly-rough surfaces to the data. We
show these plots in panels (a) and (b) of Fig. 7 for the sandpaper and the wallpaper. In
each plot, we show the modified B-K model for slightly-rough surfaces as a dashed curve,
the modified B-K model for very-rough surfaces as a dotted curve, and the corrected B-K
model for moderately-rough surfaces as a dash-dot curve.

There are a number of points to note from these plots. First, the data curve is closer
to the corrected B-K model curve for small and intermediate angles. Second, when the
modified B-K model for slightly-rough surfaces is used, the radiance curve for small and
intermediate angles is higher than the curve corresponding to the modified B-K model for
very-rough surfaces. For these incidence angles the condition g � 1 may be violated and



switches to g ≈ 1 or to g � 1. Finally, although the data curve for large incidence angles
is closer to the modified B-K model for very-rough surfaces, the difference between the
two curves is considerable. The problem may originate from the simplistic assumption in
the B-K model that the surface correlation function is Gaussian. Some authors [4, 6] have
shown that when the surface correlation function is exponential, the B-K model results in
better agreement with real-world data.

7 Conclusions
In this paper we have suggested a correction term as an alternative to the modification of
Vernold and Harvey [12] that can be used in conjunction with the B-K model. While the
Vernold-Harvey approach is aimed at improving the B-K model for large incidence and
scattering angles, we aim to provide a corrected variant of the B-K model for moderately-
rough surfaces. In doing this, we have exploited the Fresnel coefficient in a manner
similar to that of Wolff et al. [10]. Our experiments show that the corrected model
results in good agreement with real-world reflectance data for most incidence angles.
Further, the applicability of the Fresnel correction term can be tested when the correlation
function is assumed to be exponential. It would also be interesting to investigate whether
an integrated correction process could be developed that would apply under all roughness
conditions, hence avoiding the need to switch between different approximations.

References
[1] P. Beckmann and A. Spizzichino, The Scattering of Electromagnetic Waves from

Rough Surfaces, Pergamon, New York, 1963.
[2] J.E. Harvey, C.L. Vernold, A. Krywonos and P.L. Thompson, “Diffracted Radiance:

A Fundamental Quantity in a Non-paraxial Scalar Diffraction Theory,” Applied Op-
tics, vol. 38, no. 31, 1999, pp. 6469-6481.

[3] X.D. He, K.E. Torrance, F.X. Sillion and D.P. Greenberg, “A Comprehensive Physical
Model for Light Reflection,” ACM Computer Graphics, vol. 25, 1991, pp. 175-186.

[4] J.A. Ogilvy, Theory of Wave Scattering from Random Rough Surfaces, Adam Hilger,
Bristol, 1991.

[5] M. Oren and S.K. Nayar, “Generalization of the Lambertian Model and Implications
for Machine Vision,” Int’l J. Computer Vision, vol. 14, no. 3, 1995, pp. 227-251.

[6] H. Ragheb and E.R. Hancock, “Estimating Surface Characteristics using Physical
Reflectance Models,” Proc. IEEE CVPR, pp. 177-184 .

[7] J. Stam, “Diffraction Shaders,” Computer Graphics, Proc. ACM SIGGRAPH 99,
ACM Press, New York, 1999, pp. 101-110.

[8] K.E. Torrance and E.M. Sparrow, “Theory for Off-Specular Reflection from Rough-
ened Surfaces,” J. Optical Society of Amer., vol. 57, no. 9, 1967, pp. 1105-1114.

[9] L.B. Wolff “Diffuse Reflectance Model for Smooth Dielectric Surfaces,” J. Optical
Society of America A, vol. 11, no. 11, 1994, pp. 2956-2968.

[10] L.B. Wolff, S.K. Nayar and M. Oren, “Improved Diffuse Reflection Models for
Computer Vision,” Int’l J. Computer Vision, vol. 30, no. 1, 1998, pp. 55-71.

[11] B. van Ginneken, M. Stavridi and J. Koenderink, “Diffuse and Specular Reflectance
from Rough Surfaces,” Applied Optics, vol. 37, no. 1, 1998, pp. 130-139.

[12] C.L. Vernold, and J.E. Harvey, “A Modified Beckmann-Kirchoff Scattering Theory
for Non-paraxial Angles,”Proceedings of the SPIE, vol. 3426, 1998, pp. 51-56.


