
Non-Linear Feature Selection for Classification

M. Brown
University of Manchester Institute of Science and Technology

Department of Electrical Engineering and Electronics,
Main Building, Sackville Street,

Manchester M60 1QD, U.K.

N. P. Costen
The Manchester Metropolitan University

Department of Computing and Mathematics,
John Dalton Building, Chester Street,

Manchester M1 5GD, U.K.

Abstract

This paper addresses the issues associated with performing feature or pa-
rameter selection for non-linear classifiers using a basis pursuit regularization
framework. New results on representing the feature selection problem as a
primal/dual calculation for both hard and soft margin classification problems
are derived, and it is shown that optimal feature selection can be posed, in
dual form, as a set of2n linear inequality constraints. While this is efficient,
it does limit the technique to non-linear kernels that have a finite expansion,
such as polynomials. The issues associated with both efficiently calculating
a polynomial basis pursuit classifier are then addressed and the technique is
shown to improve discrimination performance on the MNIST digit set.

1 Introduction to Feature Selection

Feature and parameter selection is an important part of many machine learning problems.
It can be used to identify important terms when the problem is poorly structured and thus
learn more about the variables’ information content. Similarly, it can be used to build
more robust classifiers, rejecting variables that do not contain significant information.
Examples of application in this area include gene selection from microarray data and
text categorization [7]. This has become even more important in recent years, as a large
range of different kernel transformations have been proposed as potential features [9].
These dual goals of knowledge extraction and data fitting are common in most statistical
classification problems. However, optimal feature selection is an NP-complete problem.

A typical method of stepwise forwards selection and backwards elimination algo-
rithms, allow developers to perform a locally optimal search through the space of sparse
models. Also, because this information is rarely represented in the final model, estimates
of the prediction accuracy may be overly optimistic. Basis pursuit regularization [1, 3, 11]
provides an alternative framework for developing features selection algorithms, where in-
stead of a combinatorial search being performed, the aim is to minimize a regularization
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function such as

f (θθθ) =
1
2
‖ttt−yyy‖2

2 +λ‖θθθ‖1 (1)

wherettt, yyy andθθθ are the target training data, classifier predictions and hyperplane parame-
ters respectively. The 1-norm on the parameter vector introduces derivative discontinuities
whenθi = 0 into the regularization function, which produces pressure to remain at zero
[4, 13]. Sparse model searching is therefore a globally optimal continuous optimization
procedure that can be solved in polynomial time. The use of a 1-norm to measure parame-
ter sparseness is similar to using a 2-norm on the output errors to approximate minimizing
the total number of classification errors. Sparseness and classification error minimization
are both NP-complete problems, however using continuous, soft approximations makes
the problem tractable and transform combinatorial, discrete search problems into a con-
tinuous optimization problem.

Previous work has investigated how to generate the complete, optimal parameter lo-
cus,θθθ(λ ), in order to explore the set of optimal sparse models as the regularization pa-
rameter varies between 0 (maximum likelihood solution) and∞ (prior model), for both
regression and classification scenarios [4]. This allows model developers to investigate
whether effects such as Simpson’s paradox [10], are present in the set of sparse models.
In addition, an on-line version, for sequentially training optimal, sparse classification and
regression models has been proposed [2]. However, all of this work has been performed
for linear models. In this paper, the theory is extended by considering how the calcula-
tions can be obtained in the dual space (data space) as this is often the starting point in
standard Support Vector Machines for considering the use of non-linear kernels. In ad-
dition, the efficient implementation of polynomial kernels is discussed. The approach of
using non-linear basis pursuit classification is validated on the MNIST [8] digit set and is
shown to improve classification performance over comparable linear bases.

1.1 Basis Pursuit Regularization

As shown in Equation 1, basis pursuit regularization involves using a 2-norm loss function
on the output errors with a 1-norm on the parameter values. For a classification scenario
with the model

y = φφφTθθθ +b (2)

where the qualitative decision is obtained by taking the sign ofy, the primal, soft margin
basis pursuit regularization function is expressed as

minθθθ ,b,ξξξ ‖ξξξ‖2
2 +λ‖θθθ‖1

s.t. diag(ttt)(ΦΦΦθθθ +111b)+ξξξ ≥ 111
(3)

where the exemplar data[ΦΦΦ, ttt] consists ofl training samples, each feature vector is of
lengthn and the class targets are bi-polar values[−1,1]. This is a piecewise quadratic
programming problem which can be transformed into a quadratic programming problem
by mapping the parameter vector into a2n dimensional space

minzzz,b,ξξξ ‖ξξξ‖2
2 +λzzzT111

s.t. diag(ttt)([ΦΦΦ −ΦΦΦ]zzz+111b)+ξξξ ≥ 111
zzz≥ 000

(4)



where, using Matlab notation,zzz(1 : n) = θθθ(θ > 0), zzz(n+1 : 2n) =−θθθ(θ < 0) andz= 0
for the remaining values. Alternatively, iterative approaches can be developed that either
generate the complete parameter locus from an initial value atθθθ = 000, or iteratively search
the piecewise quadratic surface. The advantage of transforming the problem into a larger
(parameter) space is that standard QP routines can be exploited and, as shown in Section 3,
optimization theories employed. It should be noted that there are2n+ l linear inequality
constraints in this primal form and2n+1+ l parameters in the optimization function.

For a particular value ofλ , the set of parameters that are non-zero is known as the
active parameter set and the set of data points such thatdiag(ttt)(ΦΦΦθθθ +111b) ≤ 111 is known
as the active data set. The active data set is used to calculate the values of the active
parameters for a particular classifier. The inactive data points play no role in this calcu-
lation, as with normal Support Vector Machines (SVM) [12]. The major difference with
the standard SVM formulation is the use of a 1-norm on the parameter values, rather than
a 2-norm. This has the effect of inducing a different distance norm when calculating the
size of the margin, which calculates a margin that lies in the subspace of active features.

1.2 Linear and Polynomial Basis

The major limitation of the proposed approach is the assumption of a linear decision
boundary in Equation 2. Standard SVMs extend this work by expressing Equation 3 in its
dual form, as an expansion across the data points, rather than the parameters. This in turn
allows the calculation to take place in data space, rather than parameter space, and thus a
wide range of flexible, non-linear kernels can be employed. In this paper, it is shown that
the piecewise differentiable nature of the 1-norm in Equation 3 means that a qualitative
term of the formsgn(θθθ), is always present in the dual calculation.

Therefore, the paper concentrates on how a polynomial expansion of the original fea-
tures can be used to produce non-linear discriminant boundaries, while still providing a
convenient framework for performing feature selection.

2 Primal and Dual Calculations

In this section, is it is shown how the feature selection, basis pursuit optimization al-
gorithm can be analyzed and calculated in dual (data) space, rather than in the primal
(parameter) space. The limitations associated with this approach are also discussed.

2.1 Hard Margin Linear Classifier

When hard margin classifiers are considered, it is presumed that the data is linearly sep-
arable, and the aim is to calculate the largest margin that separates the two classes, by
minimizing the size of the classifier’s parameter vector. The primal form of the hard
margin linear classifier is given by

minθθθ ,b‖θθθ‖1

s.t. diag(ttt)(ΦΦΦθθθ +111b)≥ 111
(5)



which is a piecewise linear programming (LP) problem. Transforming to z-space, the
primal problem can be expressed as

minzzz,bzzzT111
s.t. diag(ttt)([ΦΦΦ−ΦΦΦ]zzz+111b)≥ 111

zzz≥ 000
(6)

and creating a Lagrangian gives

L(zzz,b,ααα,βββ ) = zzzT111−αααT(diag(ttt)([ΦΦΦ−ΦΦΦ]zzz+111b)−111)−βββ Tzzz

s.t. ααα ≥ 000 (7)

βββ ≥ 000

whereααα andβββ are the vectors of Lagrange multipliers. Differentiating the Lagrangian
with respect toθθθ andb and equating to zero gives

δL
δzzz

= 000 = 111−
[

ΦΦΦTdiag(ttt)
−ΦΦΦTdiag(ttt)

]
ααα−βββ (8)

δL
δb

= 0 = αααTttt

and back-substituting the constraints into the Lagrangian gives a formulation in a which
is simply a Linear Programming algorithm (LP),

minααα −αααT111
s.t. ααα ≥ 000

αααTttt = 0[
ΦΦΦTdiag(ttt)

−ΦΦΦTdiag(ttt)

]
ααα ≤ 111.

(9)

Apart from the last set of constraints, this is a fairly trivial LP problem inl parameters.
The last set of constraints determine whichzi > 0, or equivalently, whichβi = 0. They
do not appear in the normal SVM formulation where a 2-norm on the parameter vector
is used. Perhaps most importantly, they represent2n constraints on the parameter values
when the rest of the calculation is being performed in data space. If non-linear kernels that
have an infinite expansion were used, they would represent an infinitely large constraint
set. Therefore, the rest of the paper is focussed on non-linear kernels/features that have a
finite expansion in parameter space. Polynomials are one such non-linear feature.

2.2 Soft Margin Linear Classifier

To express Equation 3 in its dual form, consider its corresponding Lagrangian,

L(zzz,b,ξξξ ,ααα,βββ ) = λzzzT111+
1
2

ξξξ Tξξξ −αααT(diag(ttt)([ΦΦΦ−ΦΦΦ]zzz+111b)+ξξξ −111)−βββ Tzzz

s.t. ααα ≥ 000 (10)

βββ ≥ 000



and differentiating with respect toθθθ , ξξξ andb to find the minimum gives

δL
δzzz

= 000 = λ111−βββ −
[

ΦΦΦTdiag(ttt)
−ΦΦΦTdiag(ttt)

]
ααα

δL
δξξξ

= 000 = ξξξ −ααα (11)

δL
δb

= 0 = αααTttt.

Before back-substituting into Equation 10, it is worthwhile considering these optimality
constraints in a bit more detail. From the second constraint, the Lagrange multipliers
ααα are simply equal to the non-negative residualsξξξ . Therefore, in the active data space,
they are related to the optimal parameter values viaααα = ttt− (ΦΦΦθθθ +111b). This gives a set
of linear equations on the active data points from which to determine the optimal active
parameters (θθθ , or zzzandb).

Substituting from Equation 11 into Equation 10 gives

minααα
1
2

αααTααα−αααT111

s.t. ααα ≥ 000

αααTttt = 0 (12)[
ΦΦΦTdiag(ttt)

−ΦΦΦTdiag(ttt)

]
ααα ≤ λ111

which is a QP problem in data space with a constraint set that again includes the2n pa-
rameter constraints. Using a 2-norm on the active data residuals, transforms the previous
LP problem into one with a quadratic objective. The constraint set is the same. In both of
these cases, it is interesting to note that the relationship between the Lagrange multipliers
and the optimal parameters enters as linear inequality constraints.

2.3 Examples

The effectiveness of the algorithms is demonstrated by a pair of artificial problems, the
results of which are shown in Figures 1 and 2. The former is a hard-margin case, and
as can be seen generates exactly the same classification model as a standard SVM. The
latter is a soft-margin case, and demonstrates that reducing the margin of the classifier
will increase the number of parameters included in calculating the hyperplane.

2.4 Size of Active Data and Parameter Spaces

While the dual calculation may initially appear attractive because the LP/QP problems are
solved in data space (l parameters and2n+ l + 1 constraints), when compared with the
primal problems, it should be noted that in basis pursuit regularization there are always
more active data points than parameters. This result highlights the fact that reducingλ
does not always increase the number of active parameters, especially when it is very small.
Indeed, as the margin decreases in size and the active data set decreases, this can form a
reducing, strict upper bound on the active feature set which must also decrease in size.
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Figure 1: Classifier calculated for a hard-
margin case, on the left the 1-norm classi-
fier and on the right a 2-norm SVM.
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Figure 2: Classifier calculated for a soft-
margin case, on the left using 1 parameter
and on the right using 2.

This result can be proven by contradiction. Consider when a parameter vector,θθθ , is
optimal and there are more active parameters than data. Then the active Hessian matrix in
Equation 3 is singular because its rank is determined by the minimum number of active
data and parameters. Letnnn be a member of the corresponding null space and consider
the local updateθθθ + ρnnn whereρ > 0. Without loss of generality, this can be assumed to
reduce‖θθθ‖1 (if not, then the corresponding alternativeθθθ +nnn will). However, becausennn
lies in the Hessian’s null space, the model’s output is unchanged as are the corresponding
errors. Therefore, a new parameter vector has been found with a smaller regularization
function value, which contradicts the previous assumption of optimality. The only other
possibility is thatnnn lies along a contour of‖θθθ‖1 and in that case, the subspace can be
search to find a new parameter value such that at least one active parameter becomes
inactive. This has the same effect because the number of active parameters can be reduced
in a stepwise fashion.

Therefore, even though the number of variables in the dual problem isl (rather than
2n+ l for the primal problem), there may be more efficient implementations that operate
directly on the space of active parameters.

2.5 Calculating the Parameter Locus

One motivation for considering the primal/dual formulation is to obtain a more efficient
implementation in the dual space, where the QP problem is solved overl data points and
there exists an efficient method for performing the inner product between the basis func-
tions, which results in the kernel formulation for parameter estimation and prediction. In
this paper it has been shown that for the basis pursuit problem, these two representations
are almost equivalent, and the introduction of the2n linear inequality constraints in the
dual problem is a major difference from the standard SVM formulation. Each parameter
has 2 “soft” linear inequality constraints which determine whether it will be a member of
the active set. While this is an added complexity, compared to the standard SVM formu-
lation, it should be noted that this is linear in n and reasonably efficient to calculate and
is a significant reduction on performing a combinatorial search across all feature subsets,



when performing optimal, hard feature selection.
In Section 2.4, it was shown that the number of active data and parameters are equiva-

lent, so there is little to be gained by calculating the solution in the dual/data space, though
the insights provided may motivate new learning algorithms. In the optimal parameter lo-
cus calculation is performed in data,ααα, space, it is easy to establish that the Lagrange
multipliers,ααα, are a piecewise linear function ofλ . This is because they are equal to the
residuals on the active data points, and zero otherwise. Thus, because the parameters are
piecewise linear functions and the residual is just a linear mapping of the parameters, it
follows that the residual path must also be piecewise linear. The linear segments can be
calculated using

ααα(µ) = ααα0−µΦΦΦHHH−1sgn(θθθ). (13)

whereµ is the free non-negative parameter that determines the linear segment for the
Lagrange multipliers, andααα0 is the initial value at a knot on the locus.

3 Efficient Implementation

In many SVM approaches, the rational for performing the calculation in the dual space is
that

• The number of data points is typically much less than the number of parameters in
feature space.

• The inner product calculation, over the features, which produces the gram matrix,
can be efficiently calculated using another representation.

In this paper, it has been shown that the size of the active feature space is generally
equal to the size of the active data space, so a matrix of the same size must be inverted,
irrespective of whether the primal or dual problem is solved. Similarly, the inner product
calculation over feature space does not involve all of the potential features, so there is
little opportunity to use a transformed calculation in performing the inner product. This
is due to the use of a 1-norm on the parameter vector in the primal problem, rather than a
2-norm.

The main focus for an implementation, is how the set of2n+ l linear inequality con-
straints that determine whether the parameters and data are active or inactive. If either
the potential parameter or data space is too large, evaluating this constraint set will take
a considerable time. However, it should be noted that the size of both the active data and
parameter spaces is bounded above bymin[n, l ].

4 Examples

The algorithm was studied via a pair of data sets. The first was an entirely artificial
two class problem. Existing inR3, the classes form a pair of concentric ovals in the
first two dimensions. The third dimension is a random Gaussian distribution, included to
demonstrate the feature selection; the data were displaced from the origin by adding the
vector[3,4,5] to each observation. These data cannot be separated via a linear classifier;
the plane derived depends almost entirely on jitter in the third dimension.



However, when a polynomial kernel,k〈xxx1,xxx2〉 = (xxx1 · xxx2 + 1)2 is applied to the data,
the classifier extracts the correct dimensions. As can be seen from Figure 4, evolution
of the parameters is not a simple scaling as the parameterλ is decreased. Initially only
the pure terms relating to the first dimension are used, below a value of approximately
50, those relating to the second enter and the bilinear term(x1,x2) reduces in importance,
demonstrating Simpson’s paradox.

The boundaries shown in Figure 3 depend upon the squared terms for the first two
parameters, their bilinear term and their individual linear ones. There is also a very small
(four orders of magnitude smaller) linear term for the third dimension. It is worth noting
that there a number of active points (those on or within the±1 contours). This reflects the
use of automatic relevance detection [5, 6] for selecting the most appropriate model. The
model selected as having the highest probability is the 710th; the final, 995th, model has
eight non-zero parameters.
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Figure 3: The classification boundary as
found by the polynomial classifier.
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by the polynomial classifier.

The second data set was the MNIST digits. This is a large, widely used, set of hand-
written digits [8], some examples of which are shown in Figure 5. This comprises a
training set of 60,000 digits, each centred in a28×28 image, and a 10,000 digit test set.
Both the set have approximately, but not exactly, even distributions of digits. For testing
purposes, a sub-ensemble was formed of 8000 randomly-selected images, with an even
distribution of digits. To both stabilize the data and also exclude zero-variance samples, a
PCA was performed on this ensemble and the most variable 20 eigenvectors retained (this
accounted for 64.3% of the variation in the ensemble).

Figure 5: Samples from the MNIST training (upper line) and test sets (lower line).

The ensemble were then encoded on the PCA and a set of 10 EBP classifiers built,
each with one target digit labelled ‘1’ and all others labelled ‘-1’; this was performed



with both linear and power-2 polynomial kernels. Suitability of the individual nodes
of the models was assessed by automatic relevance detection [6, 5]. Performance was
then measured by assessing the accuracy with which the test set could be classified as
the target-digit or another; these values were combined by calculating the area under
the receiver operating characteristic curves of each classifier. Although the classifier is
bias-free for the training set, this need not be true for test samples. Calculating the hit-
rate at equal errors would introduce the notion of a calibration set which is otherwise
absent. Hence there is a need to calculate a combined measure. The results are shown in
Figure 6; clearly the polynomial classifiers are significantly more accurate than the linear
classifiers (means are 0.9669 and 0.8777 respectively). It should be noted that there is
no correlation between the accuracies for individual digits for the linear and polynomial
classifiers and that the mean training AUCs are 0.9659 and 0.9967 respectively. It should
also be noted that this advantage for the polynomial classifier is not solely due to the
increased number of dimensions available; the images were re-classified with 230 linear
dimensions available (this accounted for 97.5% of the variation in the ensemble). The
mean AUC was reduced to 0.9225 for the test data and 0.9824 for the training data, with
214 dimensions extracted.

In addition, it is possible to consider the nature of the parameters included in the
classifiers, by counting non-zeroθ j values in the maximum-probability classifier. While
the linear classifiers have a mean of 19.9 out of 20 parameters used, and thus shows
no-significant sparseness, the polynomial classifiers have a mean of 181 out of 230 pa-
rameters used. As is shown in Figure 7, although the square terms are almost always used,
the bilinear terms are used significantly less frequently and linear least of all. Clearly in
this case, the classifiers depend disproportionately the upon non-linear polynomial terms.
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5 Conclusions

This paper has considered how to perform optimal feature selection for non-linear ker-
nels, within a basis pursuit framework. This was achieved by transforming the piecewise



QP problem into a higher dimensional space, and then performing a primal/dual trans-
formation for both hard and soft classification problems. In both cases, it was shown
that feature selection is represented as a set of2n linear inequality constraints. Thus, an
NP-complete combinatorial search problem is transformed into a set of linear inequality
constraints using basis pursuit. This optimal approach is limited to non-linear kernels with
a finite expansion, such as polynomials. The approach was validated on both a test and a
real-world data set. When the sparse, quadratic classifier was applied to the MNIST digit-
set, the it discriminated target and non-target digits more accurately than linear classifiers
with either equivalent numbers of dimensions or proportions of ensemble-variance.

References

[1] P. S. Bradley and O. L. Magasarian. Feature selection via concave minimization and
Support Vector Machines. InInternational Conference on Machine Learning, pages
82–90, 1998.

[2] M. Brown, N. P. Costen, and S. Akamatsu. Efficient calculation of the optimal
classification set. InInternational Conference on Pattern Recognition, 2004.

[3] S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis
pursuit.SIAM Journal of Scientific Computing, 20(1):33–61, 1998.

[4] N. P. Costen and M. Brown. Exploratory sparse models for face classifcation. In
British Machine Vision Conference, volume 1, pages 13–22, 2003.

[5] N. P. Costen, M. Brown, and S. Akamatsu. Sparse models for gender classifi-
cation. InInternational Conference on Automatic Face and Gesture Recognition,
pages 201–206, 2004.

[6] M. A. T. Figueiredo. Adaptive sparesness using Jeffreys prior. InAdvances in Neural
Information Processing System 14, pages 705–711, 2002.

[7] I. Guyon and A. Elisseeff. An introduction to variable and feature selection.Journal
of Machine Learning Research, pages 1157–1182, March 2003.

[8] Y. LeCun, L. Bottou, Y. Benigo, and P. Haffner. Gradient-based learning applied to
document recognition.Proceedings of the IEEE, 1998.
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