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Abstract

We consider the problem of locating instances of a known object in a
novel scene by matching the fiducial features of the object. Our approach
to the problem consists of two parts: a model for the appearance of the fea-
tures and a model for the shape of the object. We then bind these parts to-
gether in a Bayesian framework and match the features sequentially, using
the information about the locations of previously matched features. Into this
matching system we add a Bayesian model for dealing with features that are
not detected due to occlusion or abnormal appearance. Our system yields
promising results, losing little matching accuracy even for heavily occluded
objects.

1 Introduction

Occlusion is one of the major challenges in computer vision. Especially in feature based
recognition it is very problematic - if the interesting features of an object are not de-
tected, it is very hard to locate or recognize the object. For rigid object models, proposed
approaches include employing edge detection and the Haussdorf distance [11], directed
edges and other similarity measures [12], and intensity-based matching in a Bayesian
framework [14]. These approaches have obtained very good results, but for deformable
models the task is more challenging. Solutions have been proposed for dynamic tracking
problems [16] as well as static situations [5], but also these approaches usually deal with
occlusions with a “rigidness parameter” controlling the extent of allowed deformations
instead of applying a formal occlusion model.

In this paper, we present a novel Bayesian occlusion model incorporated into a match-
ing system capable of dealing with complex features and object shapes. A key feature of
our matching model is its sequential nature, in which the information about the location
of the previously matched features aids in matching of the following ones. Our results
indicate that the system is capable of locating even heavily occluded objects with little
decrease in matching performance.

This paper is organized as follows. Sections 2 and 3 describe our feature and object
models. Section 4 combines these models and our occlusion model in a Bayesian way
to produce a joint representation of objects. Section 5 illustrates the sequential matching
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scheme, while Section 6 presents the matching results obtained by the system. Section 7
concludes the work.

2 Feature Model

All natural images contain clutter and noise. To make the features of interest more dis-
tinctive in an image, we first transfer the observed image I into feature space T, I �→ T,
so that each image pixel I(u,v) has associated features T(u,v). As the transformation
I �→ T we employ a Gabor filter bank with 3 frequencies and 6 orientations. Gabor filters
are direction-sensitive edge detectors well-suited to feature matching tasks [3]. The filter
responses are stacked as vectors, or jets, to produce T(u,v). This approach is similar to
the Local Jet framework of Koenderink and Doorn [9].

To find the locations of the features of an object in an image we need to compare the
perceived jets T(u,v) and the jets we would expect the features to have. We estimate the
target jets by assuming that the distribution of the amplitude and phase jets in the fea-
ture space both follow a Gaussian distribution and determine the distribution parameters
G = {g1, ...,gm} by measuring the jets at the feature locations from a set of manually
pre-annotated faces. To improve contrast-independence, we normalize the jets, but since
total contrast-independence causes the system to be sensitive to faint patterns and noise
in uniform areas, we add a Gaussian term measuring the energy of the Gabor jet. Finally,
since the amplitude and phase distributions are high-dimensional (d = 17), and annotated
training images are usually limited in number due to the effort required to produce them,
we regularize the model by adding a constant ridge term εG to the diagonals of the co-
variance matrices. That is, the covariance matrices become Σ∗ = Σ + εGI. This ridge
parameter controls the steepness of the similarity function.

By combining the amplitude, phase, and energy components, we get the total similar-
ity between the perceived jet T(u,v) and the distribution of the jet corresponding to the
ith feature:

S(T(u,v),gi) ∝ N∗(Gamp|µamp,Σamp)·N∗(Gphase|µphase,Σphase)·N
∗(Genergy|µenergy,σ2

energy),
(1)

where N∗ is the unnormalized Gaussian density function, Gamp,Gphaseand Genergy are the
Gabor jet properties corresponding to T(u,v), and µamp,µphase,µenergy,Σamp,Σphaseand
σenergythe means and (co)variances of the corresponding distribution gi. The similarity
measure is illustrated in Figure 1. It can be seen that he similarity fields are multimodal,
and thus other information besides the feature model is required for successful matching.

The similarity measure presented here closely resembles the one by Wiskott et al. [15]
both in content and in performance. Both of them are rather ad hoc, but this is the case for
all such feature similarity measures. As long as there are no generative models for natural
images, engineering solutions such as these will have to do.

3 Object Model

The object model is learned from the set of training shapes Y = {Y1, ...,Ym}, which are the
annotations used in the learning of the features. To eliminate pose effects and the random
asymmetry of human faces, we use a mirrored replicate of each training shape as part of



Figure 1: Sample feature similarity fields. The target features are the outer corner of the
leftmost eye (left image), the point between the nostrils (center image) and the tip of the
chin (right image). Note how the fields are multimodal, with peaks in several distinct
locations.

the training data set. An example of a training shape distribution is illustrated in Figure 2.

We consider an object shape to be the sum of a basic object and variations from this
shape. A simple representation of this is a Gaussian distribution with the basic shape
represented by the mean and the variations by the covariance. Since we do not have
any real prior information about the covariance of the features, we set a vague congujate
inverse-Wishart prior on it:

Σ ∼ Inv−Wishartν0
(Λ−1

0 ), µ|Σ ∼ N(Ȳ,Σ/κ0), (2)

where ν0 and Λ0 describe the degrees of freedom and the scale matrix for the inverse-
Wishart distribution, and κ0 is the number of prior measurements. The posterior dis-
tribution of the distribution parameters is from the normal-inverse-Wishart family with
parameters [7]

µm = Ȳ, κm = κ0 +m, νm = ν0 +m, Λm = Λ0 +
m

∑
i=1

(Yi − Ȳ)(Yi − Ȳ)T . (3)

The quantity of our interest, the predictive distribution of a new shape x given the
training shapes, can be computed with the result

p(x|Y) =
∫

p(x|ξ )p(ξ |Y)dξ = tνm−d+1(µm,Λm(κm +1)/(κm(νm −d +1))), (4)

where d is the dimension of the distribution (d = 116 in our case for 58 features) and
ξ denotes collectively the parameters µ and Σ. For our sequential sampling scheme we
need to be able to compute the conditional distributions of this distribution, as described
in Section 5. The parameters of the prior distributions were set such that we could ap-
proximate this t-distribution with a Gaussian one with the number of training samples we
had (m = 37, κ0 = 1, ν0 ≈ 100). The conditional distributions can easily be computed
from the Gaussian approximation, and thus our final model for the shape of the object to
be matched is

p(x|Y) ≈ N(µm,Λm(κm +1)/(κm(νm −d +1))). (5)



Figure 2: A sample training shape distribution. In the upper row, the thick gray graphs
show the mean shape and the thinner black graphs the leading eigenvectors added to the
mean. In the other rows, the face on the left has been morphed according to the princi-
pal components, both in the positive (middle row) and negative (lower row) directions.
Components 1 and 2 appear to be related to rotations, while components 3, 4, and 5 are
shape-related.

4 Probability Model

The previous two sections described our feature and object shape models, which we com-
bine with a Bayesian probability model. A similar Bayesian approach to image analysis
has been proposed by Li et al. [10], although their aim is the classification of images
according to the objects contained in them rather than the precise matching of the objects.

In the Bayesian point of view all observed and unobserved quantities are considered
random variables following some distributions [7]. Our observed variables are the feature
image T and the training features G and object shapes Y. Our unobserved variables are
the locations of the n target features arranged into a planar configuration, x = {x1, ...,xn}
as well as the shape model hyperparameters ξ .

Without the occlusion model our aim is to estimate the posterior distribution of the
feature locations given the image and the training data, with the hyperparameters inte-
grated out:

p(x|T,G,Y) ∝ p(T|x,G)
∫

p(x|ξ )p(ξ |Y)dξ , (6)

where p(T|x,G) is the image likelihood and
∫

p(x|ξ )p(ξ |Y)dξ the prior, composed of
the object shape and hyperprior parts. The likelihood measures the probability of observ-
ing the feature image T given the feature locations x and the training features G. The
object shape prior is the predictive distribution of a new object shape given the training
shapes. That is, we consider x, the feature configuration to be estimated, a new sample
from the distribution of object shapes estimated from the training data. Here we have
made some independence assumptions, namely that the training features G only affect



the image likelihood and the training shapes Y only affect the prior.
Our object model can be used directly as the prior part, but the feature similarity

measure can not directly be interpreted as the likelihood p(T|x,G). As in practice it is
extremely difficult to assess the probability of observing an image given a feature con-
figuration, we make the simplifying assumption that the likelihoods of the transformed
pixels of the image are independent of each other and dependent only on the individual
feature locations xi and training features gi pertaining to the ith feature, and approximate
the individual likelihoods with their feature similarities so that p(Ti|xi,gi) ≈ S(T(xi),gi).
The likelihood of observing an image given a feature configuration x is given by multi-
plying the feature similarities at the feature locations specified by the configuration. The
similarities are computed for all pixels of the image so that the features can in principle
be located anywhere in the image. With this likelihood, we can compute posterior distri-
butions of feature configurations with (6). In practice, due to the sequential nature of the
actual matching, we are interested in the conditional posteriors

p(xi|T,x′,G,Y) ∝ p(Ti|xi,gi)
∫

p(xi|x′,ξ )p(ξ |Y)dξ , (7)

where x′ = x1,...,i−1 is the set of features matched before the ith one.
To include the possibility of occlusion into the matching model, we add a vector of

indicator variables γ such that

γi = 1, if the ith feature is detected (8)

γi = 0, if the ith feature is not detected (9)

Now our aim is to infer the marginal posterior distribution of the ith feature:

p(xi|T,x′,G,Y,γ′) =
∫

p(xi,γi|T,x′,G,Y,γ′)dγi, (10)

where γ′ = γ1,...,i−1 denotes whether the features matched before the ith one were detected.
Since there are only two possible values for γi, the integral can be written as the sum

p(xi|T,x′,G,Y,γ′) = p(xi,Ni|T,x′,G,Y,γ′)+ p(xi, N̄i|T,x′,G,Y,γ′), (11)

where we have denoted γi = 1 with Ni and γi = 0 with N̄i. With Bayes’ theorem, the
posterior (10) can be written as

p(xi|T,x′,G,Y,γ′) ∝ [p(Ti|xi,gi,Ni)P(Ni|γ′)+ p(Ti|xi,gi, N̄i)P(N̄i|γ′)]
∫

p(xi|x′,ξ )p(ξ |Y)dξ , (12)

where we have assumed that the object prior is independent of feature detection and that
the prior probabilities of detection and no-detection are dependent only on the detections
of the previously matched features, whereas the likelihood is assumed not to depend on the
previous detections. Furthermore, since we do not have a model for the interdependence
of the occlusions, we assume that the detection probabilities are a priori independent
of the previous detections, P(Ni|γ′) = P(Ni). For known occlusion configurations (for
example, if we knew that one horizontal half of the object was occluded) such a model
could easily be included.

The difficult part of the model is p(Ti|xi,gi, N̄i), the likelihood of observing the image
when the feature is not detected. We use a flat likelihood - since the feature is not detected,



we get no information about its location from the image. The relative level of the flat
likelihood is another problem, as it determines the balance of possible detections and no-
detections in the image. We used the mean of the likelihood of the feature over the whole
image, which seemed to work rather well.

5 Sampling

Our posterior distributions can not be evaluated in closed form as the likelihood can only
be computed numerically, but we can obtain samples from the distribution and estimate
the quantities of interest such as the posterior mean from the samples. Without the occlu-
sion model we have used Markov chain Monte Carlo (MCMC) methods [8] to produce
the samples. Introducing the possibility of occlusion increases the multimodality of the
posterior (the posterior of object location can vary lot according to which features are as-
sumed to be detected), which lowers the efficiency of these methods. In theory we could
sample also over the detection variables γ with MCMC, but this would greatly increase
the dimensionality and the computational requirements of the problem. Instead, we use
sequential Monte Carlo (SMC) [4] to draw the samples, especially as according to our ex-
perience SMC seems to explore multimodal posteriors better than MCMC methods (the
Gibbs and Metropolis-Hastings samplers change mode very seldom if the modes are dis-
tinct). SMC methods have usually been used for dynamic problems such as tracking, but
it is also possible to sample from static posteriors with them [1].

Bayesian SMC algorithms represent the posterior as a weighted set of particles (θk,wk).
The particles are drawn from a proposal distribution π(θk+1|θk), after which the weights
are computed with the ratio of the target distribution and the proposal distribution at the
sampled point:

wk+1 =
p(y|θk+1)p(θk+1|θk)

π(θk+1|θk)
. (13)

Usually either the prior p(θk+1|θk) or the likelihood p(y|θk+1) is used as the proposal,
which simplifies the weight equation. After all particles have been updated, a resampling
step according to the particle weights is often performed - since some particles tend to
have almost zero weights and thus do not affect any estimates, it is sensible to reallocate
these to the particles with weights larger than zero.

Our target posterior distribution is given in (12). If a feature is visible in the image,
the corresponding likelihood is peaked, and a reasonable proposal is the likelihood itself
(which is also used in the system without the occlusion model). If a feature is not visible,
the likelihood is flat, and we would like to use the prior as the proposal. One solution
is to use a mixture proposal distribution composed of both the prior and likelihood terms
π(θk+1|θk) = φp(y|θk+1)+ (1−φ)p(θk+1|θk), where φ is the mixing ratio between the
two proposals [6]. To make both terms equally meaningful, both the likelihood and the
prior must be normalized. To reduce computational load, we only evaluate the likelihood
and prior within some “reasonable” distance from the prior mean, for example 3 σ’s.
Scaling of the object is handled by estimating the scale from the previously matched
features and modifying the prior accordingly.

Since we do not know which features are visible and which are not, we randomize the
matching order of the features. This is done by randomly assigning each particle a feature
from the list of unmatched features after the resampling step. As the occluded features



have lower likelihood values than the visible ones and thus lower posterior probabilities,
they receive lower weights, which causes the visible features to be (mostly) matched first.
For the first feature there are no previously matched features, and thus we draw it directly
from the likelihood, implying a flat prior.

6 Results

We evaluated the performance of the matching system by testing it with both simulated
and real occlusions. For the simulated occlusions, we used the IMM-DTU database [13]
consisting of 37 annotated facial images. An occlusion was first generated for each image
by setting the pixel values of the right half of the image to the mean pixel value of the
image - over half of the features were thus occluded (the ones near the edge can also be
considered occluded, as the very strong edge confuses the Gabor filters). Each image
was then matched in turn by using the other 36 images as the training data. The Λ0
hyperparameter was set such that the standard deviation for the final features was around 4
pixels. Sample results from matching the artificially occluded objects are shown in Figure
3. Although the training and test data are similar, the matching is not necessarily easy as
the multimodal likelihood (see Figure 1) causes also the posterior to become multimodal.

Figure 3: Matching results for images with simulated occlusions. In the top row, the light
graphs are the sample means and the dark graphs the ground truth. In the bottom row, the
light grids are again the sample means and the dots represent a part of the samples. Note
how the variance of the samples is higher for most of the occluded features.

The matching error was assessed by measuring the point-to-point error (P2P) and the



point-to-curve error (P2C) (measuring the distance from the closest curve point) from the
manual annotations. We measured the effect of the occlusion to the matching error of
the visible features, the occluded features, as well as to the mean error of all features.
To get a baseline comparison, the errors were also computed for unoccluded objects with
and without the occlusion model. Furthermore, we compared the results to the AAM
framework [2] implementation presented by Stegmann [13]. To decrease the effect of
sampling variance on the results, the computations for our model were repeated 20 times
and the mean error computed over all repetitions. The results are shown in Table 1. For
the visible features, the increase in error is small, around 1 pixel (P2P)/0.5 pixels (P2C).
There are two reasons for this increase: first, since fewer features are detected, there
is less information available about their locations. Second, due to the randomization of
the matching order, some visible features are bound to be matched after some occluded
features, which hampers the matching performance because of the conditioning on the
previously matched features. The matching error of the occluded features as well as the
mean error of all the features are clearly higher, as can be expected, but especially the
point-to-curve errors are still very reasonable. If all the features are visible, the occlusion
model increases the matching error slightly due to the uncertainty about the visibility of
the features.

The images with real occlusions were taken with a digital camera in uncontrolled
office lighting conditions. The IMM-DTU images were used as the training data, with
some results shown in Figure 4. Here we used a tighter prior than above due to the heads
being smaller and the images being of poorer quality than the IMM-DTU images - final
standard deviation was about 2 pixels. The results are promising: the IMM-DTU images
(see Figures 1, 2 and 3) are very different from our images, and still the system performs
well in most cases. For these images we had no ground truth available, and thus we can
only demonstrate the results visually.

Table 1: Matching Results For Visible and Occluded Features

Error measurement P2P error P2C error

Simulated occlusions, proposed method:

Visible features 6.96 3.50

Occluded features 11.3 6.89

All features 9.29 5.31

No occlusions, all features:

Proposed method 6.22 3.30

Proposed method without occlusion model 5.57 2.78

Grayscale AAM 5.74 3.04

Color AAM 5.54 2.93

A drawback of any sampling-based scheme is computational complexity. Currently,
with our unoptimized MATLAB implementation, the matching of a single image takes
about 3 minutes on a regular Pentium IV PC.



Figure 4: Matching results for images with real occlusions. The graphs show the sample
means. The results are very good: only in the first image of the second row the matching
has failed due to the likelihoods being low for almost all features. For example, the
eyeglasses pass directly over the eye, which distorts the eye features.

7 Conclusion

We have presented a novel Bayesian occlusion model for a feature-based object matching
system utilizing pixelwise likelihood computation, learned object models and sequential
Monte Carlo sampling. The proposed system can handle complex features and object
models, with good matching results even for heavily occluded objects.
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