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Abstract

Recently, proteomics research has become a large growth area in the bio-
sciences. Studies involve differential analysis of large sets of 2-D Elec-
trophoresis (2-DE) gels. We present a robust and accurate 2-DE gel align-
ment algorithm which combines point matching and local image-based re-
finement. The algorithm uses a novel combination of Euclidian, shape con-
text, image and feature based attributes to produce a point distance measure.
Correspondence is determined using this measure and is further improved
using an iterative M-estimation approach, and shown to be robust in the pres-
ence of large image distortions. Local image-based refinement is shown to
improve significantly alignment accuracy. The high accuracy and robustness
of the resulting system indicates that it is a promising method for use in prac-
tical gel alignment situations.

1 Introduction
Recently, proteomics research has become a large growth area in the bio-sciences. Often,
studies involve differential analysis of large sets of 2-D Electrophoresis (2-DE) gels. 2-
DE is a method of protein separation that results in a matrix of diffuse spots which can
be visualised by pre or post staining. Each of these spots is a separated protein strain.
The volume of each spot is proportional to the amount of each protein in the original
sample. Figure 1 shows an example of a section from such a gel. In practice, 3,000-
4,000 spots can be visualised on a single gel image. The analysis of these complex gel
images is a significant bottleneck in the proteomics research workflow [18]. To carry out
a differential investigation, it is necessary to determine correspondence between spots on
sets of gel images. This implies that a transformation relating one gel image to another
is required. The production of 2-DE gels is inherently variable. As a result complex
non-linear deformations are often required to align comparable gels. These deformations
are often difficult to identify manually and time-consuming to correct. The goal of this
work is to develop an image registration scheme that can be used to bring pairs of gels
into alignment. However in implementing such a scheme, it is important to retain genuine
sample differences between the gel pair.
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(a) Original (b) Small deformation (σ=0.005)

(c) Medium deformation (σ=0.025) (d) Large deformation (σ=0.05)

Figure 1: Examples of 2-DE gel image. (b)-(d) have been synthetically deformed.

1.1 Background

Many gel matching algorithms algorithms first extract point features from the images,
most commonly spot centres, and attempt to match these points. Due to the complex-
ity of gel images, the automatic extraction of point features often introduces additional
spurious points whilst missing or, more commonly, merging overlapping spots. As well
as these differences, the genuine differences in the patterns of spots in gels can generate
non-matching points. These factors createoutlier points associated with each gel of a
comparable pair that have no counterpart in the other. These outliers typically lie within
the range of the true spot pattern. Matching algorithms based on point landmarks must be
robust to these outliers.

Most commercial systems addressing 2-DE gel matching have used local graph match-
ing algorithms (e.g.[6]). These are generally not robust to outliers and usually require user
interaction either to seed the matching process or to verify the final matches. In the com-
puter vision literature, a commonly used point matching scheme is the Iterative Closest
Point (ICP) algorithm [2]. ICP iterates between estimating correspondences and then



determining transformation parameters given this correspondence. Standard ICP uses a
Euclidian distance metric. Belongieet al [1] have proposed a distance metric based on
shape context(SC), and used it in connection with an optimal Bi-partite Graph Matching
(BGM) algorithm to determine correspondence. We have previously shown that BGM
is not an appropriate matching algorithm when both sets of points contain outliers [12].
However, it is possible to use SC within the ICP algorithmic framework. In section 2.2
we show how to combine both SC and Euclidian metrics for robust matching. We eval-
uate this in section 3 together with thesoftassignalgorithm of Ranjaraganet al [10][11],
which has previously been used in building anatomical altases [5]. The use of purely
image-based registration (e.g. [14][17]) has not been proved sufficiently robust for gel
matching [13]. We have shown [12] that point-matching is more robust for 2-DE gel
matching, even in the absence of image information. However, we believe that the use of
image-based features can improve the local registration of purely point-based matching.

2 Method
Our gel registration algorithm seeks to combine the global correspondence properties of
point matching schemes, with the good local refinement properties of image based regis-
tration. First protein spot centre point features are extracted from a pair of images. These
points are corresponded using a distance metric combining Euclidean distance, the con-
text of neighbouring spot positions and the context of the distribution of spot intensity and
size. The transformation parameters arising from this match are calculated and refined us-
ing local image correlation. The resulting transformation is used to initialise and constrain
the next point matching step. The process is iterated until a convergence criterion is met.
The stages of our algorithm are described in more detail in sections 2.1-2.4.

Throughout the process we have used Clamped-Plate Splines (CPSs) [16] to param-
eterise non-rigid transformations, after extracting any affine component. CPSs are in-
terpolating spines, similar to Thin-Plate Splines [3], but they use an alternative Green’s
function that yields improved boundary conditions on the unit circle. Withn control
points{(xi ,yi)}n

i=1, CPS~a and affine parameters~b can be calculated by solving the linear
system:

~z= A~a+B~b (1)

where~z are spline target points,A is ann×n matrix of Green’s function values (Ai j =
G(‖xi − x j ,yi − y j‖)) andB is ann×3 matrix whose rows are[1xiyi ]. They can be con-
verted into weighted smoothing splines by modifying the above formula:

~w~z= (A′+λ I)~a+B′~b (2)

where~w is ann element vector of control point weights,A′ is ann×n matrix of weighted
Green’s function values (A′i j = G(‖wixi −w jx j ,wiyi −w jy j‖)) andB′ is ann×3 matrix
whose rows are[1(wixi)(wiyi)]. In 2, λ > 0 is a smoothing parameter andI is then×n
identity matrix. We chose to manipulateλ as a function ofp: λ = p/(1− p), in which
case0≤ p< 1, with p= 0 representing an interpolating spline (no smoothing) andp→ 1
increases smoothing until only affine parameters are obtained. All transformations have
been calculated in the range−0.5→ 0.5, scaling and centring image coordinates to this
region.

The whole algorithm has been implemented in a multi-resolution framework, with
the final transform from the current resolution being used to initialise the next highest. To



help avoid local minima we have varied the amount of regularisation applied during spline
calculation at each resolution. Starting with a strongly constrained smooth transform at
coarse resolutions, the value ofp is decreased at each resolution level, ending with a
less constrained transform. In this work we varyp linearly between 0.25 and 0.01. This
approach, controlling regularisation as the refinement progresses is similar in effect to the
linkage between regularisation and temperature schedule in the work of Chuiet al [5].

We now describe each stage of our algorithm in more detail.

2.1 Feature Extraction

We have used an extremely simple point feature extraction process to detect spot centres
at each resolution. We are able to do this as the rest of the algorithm has been designed to
be robust to large numbers of outliers and noise in the original point sets. To calculate a
binary image feature image, we use a threshold on the Laplacian of each image as follows:

f = (∂ 2
x > t)∧ (∂ 2

y > t) (3)

where∂ 2
x and∂ 2

y are the 2nd derivative of the Gaussian smoothed gel image in thex and
y directions respectively andt is a threshold. We have chosen to smooth with Gaussian
σ = 2 pixels and threshold att = 0. The centre of gravity of each connected region in
the image meeting this criterion is taken as a point location. We have limited the number
of points to a maximum by discarding all but the 400 most intense spots, measured using
image intensity information. The number of features to retain was chosen manually. Our
spline transformation model therefore has a maximum of 400 control points.

2.2 Point Matching

In previous work, we have developed a point matching strategy suitable for use when
aligning gel images [12]. In this work, we have extended the basic scheme in several
ways, and we will now briefly describe the algorithm together with our extensions.

Our point matching scheme is based on the commonly used ICP algorithm [2]. In
[12] we used the (SC) [1] measure as an alternative distance metric to Euclidian distance.
SC provides a semi-global description of the spatial distribution of neighbouring points
by counting the number of points in radial regions, yielding histograms that can be made
invariant to affine deformations (see figure 2(a)). The method also includes an explicit
treatment of outliers. Theχ2 statistic between histograms is used as a distance between
features. Careful evaluation in the presence of outlier features has shown that when de-
formation is expected to be large the most appropriate distance measure is SC, and when
deformation is small Euclidian (Euc) distance yields the highest accuracy and robustness
[12]. For this reason, we have chosen to use a weighted sum of the two distance measures:

d = αdEuc+(1−α)dSC (4)

whereα is a weighting factor between the two measures. Both are normalised over the set
of all distances to have mean 0 and standard deviation 1, which ensures equal influence
for each measure whenα = 0.5.

In addition to the distance measure presented in [12], we have added two more at-
tributes. Following the SC histogram binning method, we have have developed semi-
global image intensity and feature information descriptors. As illustrated in figures 2(b)
and 2(c), rather than counting the number of feature points in a specific bin, we have used
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Figure 2: Attributes for feature distance calculation.

the average image intensity within the region as an element of an attribute vector. The
Euclidian distance between these vectors can be calculated as a feature distance measure.
However, we know there will be important genuine differences between the intensities
and patterns of spots in two gels. This makes Euclidian intensity distance an inappro-
priate measure. Instead, we have the robust Least Median of Squares (LMedS) measure
to calculate the distance between vectors. Using this scheme, we produce two additional
distance measures, one associated with the original image intensities (figure 2(b)) and
another associated with the binary feature image (figure 2(c)) calculated during feature
extraction. The former we term Image Context (IC) and contains information about the
intensities of features surrounding each point, the later termed Feature Context (FC) en-
capsulates information about the extent of the features. These measures are combined
into a single distance between features using the following formula (neglecting normali-
sation): d′ = αdEuc+(1−α)(dSC+dIC +dFC)/3 (5)

wheredIC anddFC are distances calculated using LMedS.
Using a closest point method with this distance measure, correspondence can be deter-

mined between feature points. Corresponding points are used as control points to estimate
CPS parameters. Due to genuine differences in spot pattern and our basic automatic fea-
ture extraction scheme we know that correspondences will contain errors. We have used
the iterative M-estimation paradigm to down-weight correspondences that are inconsis-
tent with their neighbours. M-estimation calculates weights for each data point based on
their residual distance against a model. In our case, residuals are calculated as the Euclid-
ian distance between the predicted position of the feature given by the regularised CPS
transform and the associated corresponding point position. We have used the Huber ker-
nel [7] to weight the correspondences. CPS parameters are re-calculated from weighted



correspondences using equation 2. The process is iterated until convergence.

2.3 Local Image-Based Refinement

A further refinement to [12] addresses the inaccuracy of feature localisation using the
centre of gravity of regions within the binary feature image. The centre of gravity of
corresponding feature areas in two different gels may not be in the same position on the
gels. For this reason, we optimise the position of each point in one image w.r.t. the loca-
tion of corresponding point in the other. A simple gradient descent process minimises the
cross-correlation between local image patches centred at the location of each correspond-
ing pair of points, by adjusting the location of a point in one of the images. This process
is applied following the determination of correspondence and transformation parameters,
on corresponding feature pairs with high weight at each resolution level. The new feature
locations are used in subsequent feature matching iterations. For this work, we have used
an image region of15×15 pixels, corresponding to an image region slightly larger than
the largest expected protein spot.

2.4 Convergence Criterion

The criterion chosen to determine algorithm convergence is difficult to define. At present
we simply use the mean weighted Euclidian distance between corresponding features
(determined in 2.2). If the difference between this value at successive iterations is less than
10−6 then the algorithm is said to have converged. Further work is required to determine
if this an appropriate criterion.

We have also observed that after approximately three passes through point matching
and local refinement at any resolution level little improvement in registration quality is
achieved. For this reason, we apply a maximum of three algorithm iterations at each
resolution.

3 Evaluation
We have evaluated our point matching algorithm, both with and without local image re-
finement, in comparison with the softassign approach described in [5].

As subsequent analysis of 2-DE gels requires the comparison of corresponding protein
spots, the effectiveness of gel matching algorithms should be measured in terms of the ac-
curacy of alignment of protein spots. To perform this evaluation we require a large set of
gel image pairs with annotated spot positions and known correspondence. Ideally, match-
ing difficulty for each pair should be known and should represent the true range found
in real data. Data meeting these requirements is not available and, due to the complexity
of the images, would be extremely time consuming to produce. Instead, we have used
DIGE gel pairs with known spot locations and introduced varying amounts of synthetic
deformation to form our test data set. DIGE gels [15] are produced using protein mix-
tures that are pre-stained with different fluorescent dyes. The dyes are chosen to fluoresce
under different frequencies of UV light. After staining, up to three samples can be mixed
together and run on a single gel. Corresponding proteins from different samples will mi-
grate to exactly the same place on the gel and be coincident in gel images. To retrieve
images from the separate samples, the gel is illuminated with the excitation frequency for
each of the dyes, allowing pairs of images to be produced with perfect correspondence
but showing genuine sample differences1.

1Gel matching is still required to compare between different DIGE gel pairs!



In this evaluation, we have used 5 pairs of DIGE gel images, each with∼650 an-
notated spot positions. Using these images, we created a large evaluation data set by
introducing varying amounts of synthetic deformation to one of the images of each pair.
The amount of deformation has been controlled as follows: 10 control points are sampled
from a uniform random distribution. 10 random offsets are sampled from a Gaussian with
knownσ . A smooth Gaussian RBF transformation (p= 0.05) is calculated using the con-
trol points and offsets and used to transform a gel image and its spot positions. Increasing
the value ofσ increases the amount of deformation. An estimate of the deformation en-
ergy E can be calculated from the parameters of the RBF (E = ∑diag(~a′A~a)). Figure
1 shows examples of images deformed using different values ofσ . In our evaluation,σ
has been varied linearly in 10 steps between0.005→ 0.05 (E : 0.0061→ 1.2). By ob-
servation, the top end of this range greatly exceeds the maximum amount of deformation
required to align corresponding gels in practice. At each value ofσ , we have created 5
randomly deformed images from each DIGE pair. This gives a total of5×5×10= 250
gel alignments, each with∼650 spots.

After gel alignment, the recovered transformation2 is used to transform the spot lo-
cations to their estimated position in the un-deformed gel. We have measured the resid-
ual Euclidian distance between the transformed spots and their ground-truth position (r).
Residualr is reported as a proportion of the maximum dimension of the associated gel
image. In this way,r = 0.01 represents an error of 1% of image size.

4 Results and Discussion
Figure 3(a) shows mean and standard deviation ofr after alignment for each algorithm:
Point Matching with Refinement (PMR), Point Matching (PM) and SoftAssign (SA)3.
The results are plotted against mean deformation energy (Ē) over replicates at each value
of σ . A residual value ofr = 0 indicates a perfect recovery of the alignment of a protein
spot. Results for the set of 5 images have been combined and as such each data point
represents∼16250 point residuals. Also shown in figure 3(a) are values for un-aligned
point residuals (Orig) showing the amount of deformation in the original data in terms of
point residual. The data for PM and PMR are almost coincident on the scale of figure
3(a). Figure 3(b) shows the same data, this time including only the first 7 groups for PM
and PMR. Large error bars on groups8→ 10 prevent easy visual comparison of group
means, and so have not been displayed on this figure.

Each algorithm produces reduced residuals compared to the original deformations.
However, the performance of SA is far worse than either PM or PMR. Throughout the
SA algorithm uncertainty over correspondence is gradually reduced using a deterministic
annealing schedule. One-to-one correspondence can be forced by reducing the annealing
temperature to zero. However, in the implementation of SA we have used, temperature
is coupled to spline regularisation, and allowing temperature to reach 0 produces unsta-
ble results. This problem could be resolved using a fully diffeomorphic transformation
parametrisation such as that proposed in [9]. In this evaluation, we have used the an-
nealing parameters provided with the implementation that were used to produce results
reported in [5]. These parameters retain a certain level of correspondence uncertainty
in the estimation of the final transform. This uncertainty reduces the accuracy of the
algorithm. In contrast, both PM and PMR algorithms use one-to-one correspondence, it-

2A thin-plate spline is used to parameterise transformations in [5]
3Using code available at: http://noodle.med.yale.edu/∼chui/tps-rpm.html
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Figure 3: (a) Mean residualr for each algorithm (PM,PMR,AS) and original deforma-
tion (Orig) with±1 std.dev. error bars.r plotted as a proportion of image size.x-axis
shows mean deformation energȳE for the original deformation of each group. (b) Same
data, showing only first 7 measurements for PM and PMR (error bars slightly offset for
display).

eratively down-weighting inconsistent correspondences. This allows greater accuracy to
be achieved when a large enough proportion of correct correspondences are represented
in the original set. Our careful choice of distance measure ensures that this proportion is
large. Also, SA may only be well suited to highly structured data (such as that presented
in [5]). SA has been observed to first align along theprincipal modesof point patterns,
which may be of limited utility in this case.

Both PM and PMR are significantly more accurate than SA. Figure 3(b) shows that
PMR, which uses local image refinement, produces consistently lower residuals than PM.
The reduction in residual mean is significant at the 0.01 level for all groups, except when
σ = 0.045(Ē ≈ 0.75). The mean residual achieved by both methods is almost constant
up to a bending energy of̄E ≈ 0.25, showing robustness to deformations up to this mag-
nitude. We have observed that this is a realistic upper level for the amount of deformation
required to align most 2-DE gel pairs, however further work is required to validate this.
PM and PMR give a residual value ofr ≈ 10−3 for theĒ≈ 0.25group, which corresponds
to a mean protein spot location residual of 1 pixel in a1000×1000pixel image.

For a gel registration system to be of use in practice, alignment must be accurate
across the entire gel. If groups of misaligned spots are present manual validation and
correction of results would be required. This is a time-consuming and subjective process
which should be avoided. We have evaluated the numbers of large point residuals by
counting the number of residuals greater than a threshold. Tables 1(a) and (b) show the
percentage of residuals larger than 1% and 2% of image size for a selection of values of
Ē. For users to have high confidence in a gel alignment system, very few large residuals
must be produced. Using 1% of image size (10 pixels in a1000×1000pixel image) as
a threshold, both PM and PMR produce fewer than 45 large residuals out of∼ 16500
measurements. Using the 2% threshold both produce less than 10 large residuals. In con-
trast, SA results in∼ 780and∼ 1400respectively. The small numbers of large residuals
produced demonstrates that either PM or PMR may be suitable for use for automatic gel



Ē ≈ 0.01 0.08 0.25 1.02
PM 0.15 0.015 0.26 11.29

PMR 0.02 0.013 0.21 10.28
SA 64.93 71.33 84.1 93.77

Ē ≈ 0.01 0.08 0.25 1.02
PM 0 0.01 0.04 8.19

PMR 0 0.01 0.07 7.72
SA 15.62 30.94 48.54 79.35

(a) r > 1%image size (b)r > 2%image size

Table 1: Percentage of residuals greater than 1% and 2% of image size.

alignment.

5 Conclusion and Future Directions
We have presented a robust and accurate point matching based 2-DE gel alignment algo-
rithm. The algorithm uses a novel combination of Euclidian, shape context, image and
feature based attributes to produce a point distance measure capable of determining good
correspondence between protein spot point sets. This correspondence is further improved
using an iterative M-estimation approach. Adding a local refinement step based on image
intensities has been shown to improve significantly alignment accuracy. Our algorithms
have been shown to out-perform the softassign approach described in [5]. The high accu-
racy of the system together with the small number of large spot alignment errors indicates
that this system shows promise for use in practical gel alignment situations.

The algorithm described in this paper may be improved in several ways. The effect of
the choice of the number of spline control points has not been investigated. The issue of
group-wise gel alignment has not been addressed in this work. In particular, the alignment
method presented is not inverse consistent. The work of Christensen [4] could be used to
enforce this constraint. Also it would be possible to ensure diffeomorphic transformations
are produced using [9].

Recently, interest has grown in combining point based and image based alignment
techniques. The point matching scheme presented here could be used to avoid the manual
landmark placement and correspondence requirements of [8][13].
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