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Abstract

In this paper, we describe a method for correcting underexposed images by
recovering the Lambertian diffuse component in the scene. The method
makes use of an implicit mapping between the objects in the scene and a
unit sphere. As a result of this treatment, the scene radiance function can
be represented by a polar function on the unit sphere. We pose the prob-
lem of recovering the scene radiance function as that of estimating a tabular
representation of this polar function. We demonstrate how image gradient
information can be used to perform the required mapping. With the mapping
at hand, we generate an image corresponding to the diffuse component of
the scene. The diffuse and input images are then blended in order to obtain
the corrected image. We present results on images of real-world scenes and
provide comparison with an alternative.

1. Introduction
The modeling of surface reflectance is a topic that is of pivotal importance, and has hence
attracted considerable effort in both, computer vision and computer graphics communi-
ties. When the reflectance distribution function of the objects in the scene is at hand, then
a number of image analysis tasks may be addressed. For instance, Nayar and Bolle [1]
have used photometric invariants derived from the reflectance function to recognise ob-
jects with different reflectance properties. In a related development, Droret al. [2] have
shown how surfaces may be classified from single images through the use of reflectance
properties.

Broadly speaking, the methods used to model or approximate the bidirectional re-
flectance distribution function (BRDF) can be divided into those that are physics-based,
semi-empirical or empirical in nature. Although the literature from physics is vast, it is
perhaps the work of Beckmann on smooth and rough surface reflectance that is the best
known in the vision and graphics communities [3]. Despite being based upon physically
meaningful surface parameters, the Beckmann theory is intractable for analysis problems
since it relies on the evaluation of the Kirchhoff wave scattering integral. Further, it breaks
down when either the surface roughness or the scattering angle are large. However, re-
cently, Vernold and Harvey [4] have overcome this latter problem by developing a model
which accounts for self shadowing on rough surfaces. By contrast, in the graphics com-
munity it is the development of computationally efficient tools for the purposes of realistic
surface rendering that is of primary interest, and hence it is empirical models that have
been the focus of activity. One of the most popular models is that developed by Phong
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[5]. However, neither the models developed in physics nor the computational models de-
veloped in graphics are well suited for surface analysis tasks in computer vision. It is for
this reason that Wolff [6] and Nayar and Oren [7] have developed phenomenological, or
semi-empirical, models that account for departures from Lambertian reflectance.

An alternative is to empirically estimate or to learn the BRDF under controlled light-
ing and viewing conditions of rough and specular objects [8, 9, 10, 11]. There have also
been attempts to model the reflectance properties of human skin from real-wold imagery
[12, 13]. Hertzmann and Seitz [14] have shown how the BRDF can be recovered making
use of a reference object and multiple views of the scene.

The main problem with existing approaches is that the BRDF has four degrees of
freedom, which correspond to the zenith and azimuth angles for the light source and the
viewer relative to the surface normal direction. As a result, the tabulation of empirical
BRDF’s can be slow and labour intensive. Furthermore, extensive lighting control and
prior knowledge of the surface geometry is often required for the BRDF estimation pro-
cess. There are a number of ways in which reflectance can depart from the Lambertian
case. There have been several attempts to remove specularities from images of non-
Lambertian objects. For instance, Brelstaff and Blake use a simple thresholding strategy
to identify specularities on moving curved objects [15]. Ragheb and Hancock [16] have
developed a probabilistic framework for specularity subtraction which uses the Torrance
and Sparrow model to account for the distribution of image brightness. The main limita-
tion of these methods is that they rely on the use of the BRDF to characterise the specular
spike and lobe. As a result, they lack the generality required to process real-world imagery
in an unsupervised or automatic way.

In this paper, we build upon the fact that the radiance of a scene can be decomposed
into reflectance and illumination components [17] and, hence, the exposure of images
whose scene is predominantly specular may be corrected making use of the reflectance
distribution function. To approximate the reflectance function, we commence by devel-
oping an essentially non-parametric method for estimating the reflectance function for the
objects in the scene from image data. Here, we avoid using basis functions or a prede-
termined reflectance function to characterise the specular spike and limb. Our method
makes implicit use of the Gauss map, i.e. the projections of the surface normals onto a
unit sphere. By making use of differential geometry, we show how the reflectance func-
tion can be represented by a polar function on the unit sphere. We pose the problem of
recovering the reflectance function as that of estimating a tabular representation of this
polar function. A simple analysis shows how this tabular representation of the reflectance
function can be obtained using the cumulative distribution of image gradients. We show
how the scene radiance function delivered by our method can be used to recover an image
whose diffuse component is dominant. The corrected image is the product of the blending
of this diffuse image and the one provided at input.

2. Prerequisites
Our starting point in this paper is the assumption that the lighting in the scene can be
decomposed into a specular and a diffuse component. Recall that specular highlights
are areas of high reflectivity in the scene. As a result, underexposure preserves better
specular reflectance and diffuse reflectance becomes a small contribution to the overall
lighting conditions captured in the image. This contributes to the image appearing “dark”



Figure 1:Diagrammatic representation of the exposure correction process.

to the viewer. Following this rationale, we correct this problem by recovering an image
in which the specularities have been removed. This image, which represents the diffuse
component, is then blended with the underexposed image in order to obtain the corrected
image delivered at output by our algorithm. A diagram of this procedure is shown in
Figure 1.

As mentioned earlier, our first step in the correction process is to recover the average
reflectance function for the objects in the image. To do this, we model the scene as a
single object and recover the reflectance function for the corresponding surface. We also
consider the surfaceS∈ ℜ3, corresponding to the scene, as being illuminated from a
direction~L equal to the viewer’s direction~V. Further, we model its reflectance as being
isotropic and monotonic. The reasons why we can do this are twofold. First, since we
aim to recover the diffuse component of the same surfaceS illuminated from the same
direction and viewed from the same point in space, no inconsistencies in re-illumination
or pose arise by assuming~L = ~V when the diffuse component is recovered. Second, the
mathematical conditions introduced during the development of the reflectance function
recovery process presented in this paper imply that the image gradient magnitude for a
particular brightness value is in average the same on an “arbitrary” surfaceS. As a result,
due to the fact that the surfaceS remains constant throughout the process, the recovered
diffuse image is consistent with the input image. This, in turn, allows the blending to be
performed.

3. Scene Radiance Estimation
In this section, we provide the background for our method. Our overall aim is to make an
estimate of the reflectance distribution from a single image of the scene. To commence,
consider the scene as an illuminated surface denoted byS∈ℜ3. At this point, it is worth
noting that the process developed in this and the next sections is applied identically for the
three RGB colour-channels comprising the image. Hence, in practice, we will be taking
as the input to our method a set of three single-brightness images of the surfaceS formed
on the image planeΠ. Each of these singe-brightness images correspond to one of the
three colour-channels.

The geometry of the reflectance process can be expressed in terms of unit vectors in
the directions of the surface normal, the viewer direction and the light-source direction.
The light-source~L, viewer~V and surface normal~N vectors respectively have elevation
and azimuth angles(θL,αL), (θV ,αL) and(θN,αN). We use the surface normal vector~N
as a reference and define the following elevation and azimuth angle offsets for the light-
source and viewer directionsαi = αN−αL, αr = αN−αV , θi = θN−θL andθr = θN−θV .



Suppose that the irradiance incident at the pointson the surface isfI (θi ,αi). The outgoing
radiance from the points is fO(θr ,αr). The bidirectional reflectance distribution function
(BRDF) is defined to be the ratio of the emitted surface radiance to the incident irradiance,
i.e.

ρ(θi ,αi ,θr ,αr) =
fO(θr ,αr)

fI (θi ,αi)cos(θi)dω
(1)

As noted earlier, since there are no transformations to the surfaceSthroughout the ex-
posure correction process, we can confine our attention to the case where the light-source
direction is fixed to be the same as that of the viewer. Hence, the angles of incidence
and emission are equal to the angle subtended by the surface normal to the viewer/light-
source direction. Hence,θ = θi = θr andα = αi = αr . Under these conditions, the an-
gular dependance of the BRDF is determined just by the direction of the surface normal.
Moreover, we assume that the light-source is a point at infinity, and hence the irradiance
is constant, i.e.fI (θ ,α) = k. Hence, we can writeρ(θ ,α) = k fO(θ ,α)

cos(θ)dω . Furthermore, if
we assume that the image is formed by orthographic projection of the surface, then the
measured image brightness is proportional tofO(θ ,α) = 1

kρ(θ ,α)cos(θ). Hence, the
problem reduces to that of providing a means of estimating the radiance functionfO(θ ,α)
from single images of surfaces illuminated under conditions in which the light-source and
viewer directions are identical.

We simplify the problem of estimating the radiance function by exploiting differential
geometry and making use of the Gauss map from the surface onto a unit sphere. For an
orientable surfaceS∈ ℜ3, the Gauss mapG : S 7→ Ŝ maps points on the surfaceS onto
locations on the unit spherêSwhich have identical surface normal directions. Our aim is
to use correspondences between surface normal directions to map brightness values from
the image onto the unit sphere. The polar distribution of brightness on the unit sphereŜ
is the radiance function for the surface. To avoid ambiguities, we assume that points on
the surface with identical surface normals have identical brightness values.

Of course, in practice we do not have surface normals to hand and hence the mapping
of the brightness values from the image onto the unit-sphere is not straightforward. Hence,
we specialise our discussion to the case where the planeΠ is chosen so that the viewer
direction~V and the light-source direction~L vectors are co-incident, i.e.~L = ~V. Suppose
that the pointp on the unit sphere has zenith angleθ and azimuth angleα. Under the
Gauss map, the brightness value associated with this point is denoted by the polar radiance
function fO(θ ,α) = I , whereI is the measured brightness at the corresponding point
s in the image of the surfaceS. As noted above, when~L = ~V, then provided that the
reflectance process is isotropic, then the distribution of radiance across the unit sphere
can be represented by a functiong(θ) of the zenith angle alone. As a result, the observed
brightness values mapped onto the unit sphere by the Gauss mapG can be generated by
revolving the functiong(θ) = fO(θ ,0) in azimuth angleα about the axis defined by~L
and~V. The problem of describing the observed brightness distribution over the Gauss
sphere hence reduces to that of approximating the functiong(θ) and computing its trace
of revolution.

When~L =~V, as noted earlier, the task of estimating the radiance function reduces to
that of estimating the distribution of brightness with zenith angle on the unit sphere, i.e to
estimatingg(θ). We show how this can be performed by using the differential structure
of the observed brightness on the image planeΠ. Hence, we commence rewritingg(θ) as
the integral of the partial derivative of the observed brightness with respect to the angular



variableθ . To do this, we assume the radiance functionfO(θ ,α) to be monotonically
decreasing and write

g(θ) =
1

2π

∫ 2π

0

(
fO(0,α)+

∫ θ

0

∂ fO(θ ,α)
∂θ

dθ
)

dα (2)

In other words, the generating functiong(.) on the unit sphere can be expressed in term
of the cumulative distribution of the derivatives of the radiance function or alternatively
the derivatives of the image brightness.

Consider the image of the unit sphere on the planeΠ. Suppose thatF(r,θ) is a
parametric polar function that represents the distribution of radiance over the image of
the unit sphere. The radial component of this function can be used to approximate the
generator of the radiance function on the unit sphereŜ, i.e. g(θ). The radial coordinate of
the function is the Euclidean distance between the pointp and the center-point of the unit
sphereŜon the viewer planêΠ, i.e. r =

√
(sin(θ)cos(α))2 +(sin(θ)sin(α))2 = sin(θ).

Hence

F(r,θ) =
[

r
g(θ)

]
=




sin(θ)
1

2π
∫ 2π

0

(
fO(0,α)+

∫ θp
0

∂ fO(θ ,α)
∂θ dθ

)
dα


 (3)

Since the surface normals are not at hand, the correspondences between locations on
the surface and the unit sphere are not available. Hence, the quantityθ is unknown. In
other words, the functionF(r,θ) only allows the surfaceS to be mapped onto the unit
sphereŜ in an implicit manner.

Using the Jacobian for the transformation between the image plane and the unit sphere,
it is a straightforward matter to show that

|∇I |= 1
cos(θ)

∂g(θ)
∂θ

=
∂g(θ)

∂ sin(θ)
(4)

In this way, we can relate the image gradient to the derivative of the functiong(θ)
with respect to the zenith angleθ . In terms of finite differences, the relationship between
the image gradient and the changes∆g(θ) in g(θp) and∆sin(θ) in θ is the gradient of
the functionF(r,θ), i.e. |∇I |= [∆g(θ)]/[∆sin(θ)].

The image gradient can be computed using the formula

∇I =
1
δ

[
I( j +1,k)− I( j−1,k)
I( j,k+1)− I( j,k−1)

]
(5)

whereδ is the spacing of sites on the pixel lattice. Furthermore, on the unit sphereŜ, it
is always possible to choose points to be sampled so that the difference in brightness is a
constantτ. As a result, we can write∆sin(θ) = τ/| ∇I |.

To recoverθ from the expression above we perform numerical integration. To do this,
we sort the image gradients according to the associated image brightness values. Accord-
ingly, let ∇Il be the image gradient associated with the brightness valuel . The numerical
estimate ofsin(θ) is found by summing or integrating the distribution of gradients over
brightness

sin(θ) =
m

∑
l=0

τ
| ∇Il |

+κ (6)



whereκ is the integration constant andm is the maximum brightness value. Hence, we
can use the cumulative distribution of inverse gradients to index the zenith angle on the
unit sphere. This indexation property means that we can approximate the functionF(r,θ)
or equivalentlyg(θ) by tabulation.

To pursue this idea, in principle, we only require a single image gradient correspond-
ing to each of the distinct brightness levels in the image. In practice, we make use of the
cumulative distribution of image gradients in order to minimise the approximation error
by averaging. LetH(l) = {s | I = l} be the set of pixels with brightness valuel . For the
brightness valuel = g(θ), the average gradient is given by

h(l) =
∑s∈H(l) | ∇I |
| H(l) | (7)

The distribution of average gradient over brightness is stored as a vectorh. Zero entries
of the vector, which correspond to brightness values that are not sampled in the image,
can cause divide-by-zero errors when the radiance function is computed. To overcome
this problem, we smooth the components of the vector by performing piecewise linear
interpolation of the adjacent non-zero elements. The resulting vector is denoted byĥ.
With the average image gradient to hand, we define the tabular approximationF̂ to F(r,θ)
as the set of Cartesian pairs

F̂ = {((τ
l

∑
i=0

ĥ(l)−1 +κ
)
, l); l = 0,1,2, . . . ,nmax} (8)

wherenmax is the maximum brightness value in the image. All that remains is to compute
the constantsτ andκ . We do this by making use of the maximum and minimum values
of sin(θ). Since the maximum and minimum values ofsin(θ) are unity and zero when
θ = π/2 andθ = 0, we can setκ to unity. Evaluating the numerical integral forl = m (i.
e. sin(0) = 0), we get

τ =−
( m

∑
i=0

ĥ(i)−1
)−1

(9)

4. Diffuse Component Recovery
In this section, we show how the tabular representation of the functionF̂ recovered in the
previous section may be used for re-mapping a Lambertian reflectance model onto the
input image. We use this re-mapping to both remove specularities from the input image
and to correct for reduced boundary contrast resultant of poor illumination conditions.

The idea underpinning this procedure is to re-map the image brightness using the
inverse Gauss mapping from the unit sphere onto the original image. To do this, we
center our attention in a simple Lambertian reflectance model.

Stated formally, our aim is to use the tabular representation of the functionF̂ to re-
trieve the Lambertian radiance at a given point on the surfaceS illuminated from a light
source with direction vector[0,0,1]T . To do this we note that the tabular functionF̂ is a
list of Cartesian pairs in which the first element is the sine of the elevation angle of the
surface normals, i.e.sin(θ) while the second element is the associated image brightness,
i.e. at a point indexeds on the surfaceS. For Lambertian reflectance, the observed radi-
ance is proportional to the cosine of the angle of light incidence, i.e. tocos(θ). Hence,



we can perform Lambertian re-illumination by noting the observed brightness at a pixelp
and identifying the associated value ofsin(θ). The corresponding corrected Lambertian
radiance iscos(θ).

The radiance re-mapping can be effected using the measured image gradient. Suppose
that R is a neighbourhood with areaA centered at the pixel location indexedp. We
compute the corrected Lambertian radiance by averagingcos(θ) over the neighbourhood
R. Since the angleθ is defined on the unit sphere, while the brightness is required on the
image plane, we weight the average using thecos(θ) and write

Î =
∫
A cos(θ) ∂g(θ)

∂ sinθ dA
∫
A

∂g(θ)
∂ sinθ dA

(10)

From the analysis presented in the preceding section it follows that the quantitycos(θ)
is proportional to the image gradient. Making the substitution|∇I | = ∂g(θ)

∂ sinθ , we find
that the discrete approximation to the corrected Lambertian radiance at a pixelp with
coordinatesu on the image plane is given by

Î(u) =
1
µ ∑

q∈R

{
cos(θ) | ∇I(v) |

}
(11)

where| ∇I(v) | is the magnitude of the image intensity gradient at the pixel-site indexed
q, whose coordinates arev = ( j,k) and

µ = ∑
q∈R

| ∇I(v) | (12)

is the average image gradient. We approximate the cosine ofθ making use of the average
image brightness gradient as follows

cos(θ)≈ cos

(
arcsin

(
τ

I(u)

∑
i=0

ĥ(i)−1 +κ
))

(13)

This averaging process effectively smooths the estimate of the Lambertian radiance.

5. Image Blending
Once the input and the diffuse images are to hand, we proceed to combine them via a
simple blending operation. This blending operation effectively averages the brightness
valuesI and Î each pixel-site in the image. The idea underpinning this procedure stems
from the fact that, as mentioned earlier, underexposure can be considered to be the result
of areas of high reflectivity in the scene. The input image can then be viewed as one in
which the specular component is dominant while the image recovered by our algorithm
can be regarded as one in which the diffuse component is larger. Hence, the blending of
both gives at output an image that is the linear combination of the specular and diffuse
components in the scene.

6. Experiments
We have experimented with a variety of images from real-world scenery. Here, we present
results for four underexposed images acquired under a variety of lighting conditions.
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Figure 2: From top-to-bottom: Underexposed input images; Brightness histograms for the input
images; Lambertian-diffuse image recovered using our algorithm; Output image (blending of the
input image and the Lambertian-diffuse image); Brightness histogram for the output images; Results
of the equalisation using CLAHE; Brightness histogram for the images equalised via CLAHE.



These are a picture of a scene in a market acquired in nocturnal conditions, two landscape
pictures acquired in strong sunlight and a picture acquired indoors. To acquire these im-
ages we used a Nikon Coolpix 4300 digital camera. All our images were acquired using
the default settings for true-color, 4 Mpixel pictures. We show our input images in the
top row of Figure 2. The second row, we show the brightness histograms for each of the
input images. In the third row, we show the diffuse images recovered using our method.
From the experiments, its clear that the algorithm has removed the specularities in the
input image reasonably well. It is also clear that a lot of background detail becomes visi-
ble when the “flattening”, due to the specular spike and limb, is removed from the scene.
Moreover, in contrast with the input image, the diffuse images appear to be artificially
“bright”. This is particularly visible in the picture of the seaside landscape and the market
image. The reason for this is that, in practice, purely diffuse scenes are difficult to find
and so the images delivered by this step of our algorithm present an unusual lightness and
hue. In the fourth row, we show the blending results for each of the input images. In
our experiments, we have used a blending opacity of 50%. In contrast with the input and
diffuse images, the blended images capture the detail of the scene while presenting better
contrast. Moreover, the levels of hue and brightness have been greatly improved. The
fifth row shows the image intensity histogram for the corrected images.

In the sixth row of Figure 2 we show the results delivered by contrast-limited his-
togram equalization (CLAHE) [18]. This is an image processing technique that hinges in
dividing the image into regions whose intensity histogram is required to approximate, at
output, a predetermined distribution. Our implementation of CLAHE makes use of 16 by
16 pixel regions, a uniform distribution and the adaptive contrast enhancement algorithm
of Stark [19] as a preprocessing step. It is worth stressing that the algorithm of Stark is
a routine built into the CLAHE implementation and, therefore, has not been used in our
correction method. The image intensity histograms for the images equalised via CLAHE
are shown in the bottom row.

In contrast with the results delivered by our method, the images enhanced using
CLAHE show biasing of the image brightness towards the extrema. The effect of this
is that the images appear to be “opaque” or “foggy”. Further, from the histograms, be-
comes evident that our method has preserved the shape of the initial distribution of image
brightness while improving the contrast.

7 Conclusions

In this paper, we have presented a method for correcting underexposed images that in-
volves recovering the diffuse component for the input image. In order to recover the
Lambertian-diffuse component, we make use of an implicit mapping between the objects
in the scene and a unit sphere. As a result of this treatment, the scene radiance can be
estimated using a a tabular representation of a polar function on the unit sphere. With this
tabular representation to hand, we generate an image that corresponds to the Lambertian-
diffuse component of the scene. Both, the input and diffuse, images are then blended to
obtain the corrected image. From our experiments, we can conclude that the corrected
images reproduce well the detail of the input images while showing better contrast and
levels of hue and brightness.



References
[1] S. Nayar and R. Bolle, “Reflectance based object recognition,”International Journal of

Computer Vision, vol. 17, no. 3, pp. 219–240, 1996.

[2] R. O. Dror, E. H. Adelson, and A. S. Willsky, “Recognition of surface reflectance properties
from a single image under unknown real-world illumination,” inProc. of the IEEE Workshop
on Identifying Objects Across Variations in Lighting, 2001.

[3] P. Beckmann and A. Spizzochino,The Scattering of Electromagnetic Waves from Rough
Surfaces, Pergamon, New York, 1963.

[4] C. L. Vernold and J. E. Harvey, “A modified beckmann-kirchoff scattering theory for non-
paraxial angles,” inScattering and Surface Roughness, 1998, number 3426 in Proc. of the
SPIE, pp. 51–56.

[5] B. T. Phong, “Illumination for computer generated pictures,”Communications of the ACM,
vol. 18, no. 6, pp. 311–317, 1975.

[6] L. B. Wolff, “On the relative brightness of specular and diffuse reflection,” inInt. Conf. on
Comp. Vision and Patt. Recognition, 1994, pp. 369–376.

[7] S. K. Nayar and M. Oren, “Visual appearance of matte surfaces,”SCIENCE, vol. 267, pp.
1153–1156, 1995.

[8] S. Westin, J. Arvo, and K. Torrance, “Predicting reflectance functions from complex surfaces,”
in SIGGRAPH 92 Conference Proceedings, 1992, pp. 255–264.

[9] G. J. Ward, “Measuring and modeling anisotropic reflection,”Computer Graphics, vol. 26,
no. 2, pp. 265–272, 1992.

[10] E. P.F. Lafortune, Sing-Choong Foo, K. E. Torrance, and D. P. Greenberg, “Non-linear ap-
proximation of reflectance functions,” inSIGGRAPH 97 Conference Proceedings, 1997, pp.
117–126.

[11] K. J. Dana and S. K. Nayar, “Correlation model for 3d texture,” inInt. Conf. on Comp. Vision,
1999, pp. 1061–1066.

[12] S. R. Marschner, S. H. Westin, E. P. F. Lafortune, K. E. Torrance, and D. P. Greenberg, “Image-
based brdf measurement including human skin,” in10th Eurographics Rendering Workshop,
1999.

[13] P. Debevec, T. Hawkins, C. Tchou, H.-P. Duiker, W. Sarokin, and M. Sagar, “Acquiring the
reflectance field of a human face,” inSIGGRAPH 2000, 2000, pp. 145–156.

[14] A. Hertzmann and S. M. Seitz, “Shape and materials by example: A photometric stereo
approach,” inInt. Conf. on Comp. Vision and Patt. Recognition, 2003, pp. 533–540.

[15] G. Brelstaff and A. Blake, “Detecting specular reflection using lambertian constraints,” inInt.
Conf. on Comp. Vision, 1988, pp. 297–302.

[16] H. Ragheb and E. R. Hancock, “A probabilistic framework for specular shape-from-shading,”
Pattern Recognition, vol. 36, no. 2, pp. 407–427, 2003.

[17] H. G. Adelmann, “Butterworth equations for homomorphic filtering of images,”Computers
in Biology and Medicine, vol. 28, pp. 169–181, 1998.

[18] K. Zuiderveld, Contrast Limited Adaptive Histogram Equalization, chapter Graphics Gems
IV, pp. 474–485, Academic Press, 1994.

[19] J. A. Stark, “Adaptive image contrast enhancement using generalizations of histogram equal-
ization,” IEEE Trans. on Image Processing, vol. 9, no. 5, pp. 889–896, 2000.


