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Abstract

In this paper, we propose a real time system for tracking targets across
blind regions of multiple cameras with non-overlapping fields of views (FOVs)
using camera topology, and targets’ motion and shape information. Kalman
filters are used to robustly track each target’s shape and motion in each cam-
era view and the common ground plane view composed of all camera views.
The target’s track in the blind region between cameras is obtained using
Kalman filter predictions. For multi-camera correspondence matching we
compute the Gaussian distributions of the tracking parameters across cam-
eras for the target motion and position in the ground plane view. Matching of
targets across camera views uses a graph based track initialization scheme,
which accumulates information from occurrences of target in several consec-
utive frames of the video. Probabilistic matching is carried out by using the
track parameters for new tracks obtained from the graph in a camera view
with the parameters of the terminated tracks learnt by Kalman filters in the
other camera views and ground plane view. We obtain 85% accuracy for
corresponding matching while tracking vehicles observed from two cameras
monitoring a highway.

1 Introduction

Tracking objects in multiple cameras is of interest for wide area video surveillance sys-
tems. Multi-camera tracking with non-overlapping fields of view (FOV) involves the
tracking of targets in the blind region and the correspondence matching of targets across
cameras. We consider these problems in this paper.

In the blind regions between the cameras, we track the targets in a common ground
plane view which has the different camera views mapped onto it using homography. For
homography to work it is required that the surfaces being mapped be planar, or it should
at least be possible to decompose a non-planar surface which is to be mapped into several
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Figure 1:Schematic block diagram of the multi-camera tracking system.

planar patches. Even in the latter case, the Kalman filters used for tracking and corre-
spondence matching gives good results. When targets are not in the FOV of any of the
cameras, the Kalman filter continues to track the most likely path of the target in the
ground plane view. When the target reemerges in the FOV of another camera, a new track
for this target is constructed using a graph theoretic approach. Correspondence matching
for cameras with non-overlapping FOVs is done using cues like location of the cameras,
the topography, and information of the targets such as shape and motion. Figure 1 shows
an overview of our system. The parameters of new tracks in each camera view are com-
pared with the parameters of the terminated tracks learnt in the previous camera views.
We use Gaussian distributions to model the error in position and shape parameters of the
targets across camera views, so that the probability of match for two targets in different
views can be calculated. The parameters of the Gaussian distributions are obtained using
a training data set.

The rest of the paper is organized as follows: In Section 2, we review some prior
works in multi-camera tracking for cameras with non-overlapping FOVs. Next, in Sec-
tion 3 for completeness, we briefly discuss the single camera tracking system which is
a pre-requisite for our system and the graph algorithm for new track initialization in a
single camera view. Section 4 describes our multi-camera tracking and correspondence
matching scheme for targets across camera views. Section 5 shows the results of a two
camera tracking system and finally, we conclude the paper in Section 6.

2 Related Work

Most of the work on multi-camera surveillance assumes overlapping camera views and
the focus is on using color information of the objects and camera calibration. Kettnaker
et al. [6] make use of the corridor topology and usual walking speed of people to form
expectations about the time windows and the locations in which people will reappear
next. They also make use of color information of the targets to achieve correspondence
matching by histogram comparisons after normalizing for lighting. Javedet al. [3] au-
tomatically estimate the line where the feet of pedestrians should appear in a secondary



camera when they exit the reference camera. They make use of the relationship between
the camera FOV boundaries to establish correspondence between views of the same ob-
ject in multiple cameras. In [4] the authors make use of Parzen windows to estimate the
inter-camera space-time probabilities from the training data i.e. probability of an object
entering a certain camera at a certain time given the location, time and velocity of its exit
from the other cameras.

Kettnakeret al. in [5] use a Bayesian formalism for the correspondence task, where
the optimal solution is the set of object paths with highest posterior probability given the
observed data. Huanget al. [2] also use a probabilistic model for finding correspondence
between vehicles on a highway in which the transition times of the objects between two
cameras are modeled as Gaussian distributions. They make use of the velocity, location,
size and color information of the vehicles to achieve correspondence matching. In [10],
Porikli et al. make use of the camera topography. The correlation between camera layout
and likelihood of the objects appearing in a certain camera after they exit from another one
is formulated by using a probabilistic Bayesian network where cameras form the nodes
and the edges represent the transition probabilities i.e. the likelihood of a person mov-
ing from one camera to another. Color calibration between cameras is done by forming
a matrix of histogram bin distances. In [7], Khanet al. design a system that discov-
ers spatial relationships between the camera FOVs and use this information to make the
correspondence between different perspective views of the same person. However, this
system assumes overlapping camera FOVs. In [9], Markiset al. automatically learn the
camera topology and the entry/exit zones of a network of non-calibrated cameras with
overlapping as well as non-overlapping FOVs.

3 Single Camera Tracking

Firstly, a robust real-time single camera target tracking system is implemented, which uses
background subtraction to detect moving foreground objects as segmented patches (SPs).
TheSPsare approximated by fitting ellipses around them. Kalman filters are employed
to track the position and motion of targets as in [8]. This system is robust to merges,
splits and occlusions. Each target has the following ellipse parameters for representation:
the major axisa, minor axisb, and the centroid(Xc,Yc). Data association is done using
shape and location information of the targets. We define a match measureDs for data
association between target 1 in the previous frame and target 2 in the current frame as:

Ds = c1×|â1−a2|+c2×|b̂1−b2|+c3×|X̂1c−X2c|+c4×|Ŷ1c−Y2c| (1)

where ˆa1, b̂1, X̂1c andŶ1c are the Kalman predicted values of the major axis, minor
axis, and centroid, respectively, of target 1 for the current frame whilea2, b2, X2c and
Y2c are the corresponding measured values of target 2 in the current frame.c1...c4 are
constants that determine the weight of each component in the match measure. In our
experiments we usedc1 = c2 = 0.8 andc3 = c4 = 1. Less weight is given to the shape
parameters since they are noisy due to foreground segmentation errors.

A Kalman filter is used to track the shape parameters of a target. For shape tracking,
the measurement vector of theSPfor thekth target in thenth frame can be written as:
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3.1 Track Initialization

Figure 2: Structure of the attributed graph used for track initialization.

Robust track initialization is achieved using a graph based method similar to that in
[8, 12]. New targets are initialized for tracking only when a target’s measurements are
reliably available in the pastτ frames. This makes the initialization accurate and the
tracker stable.

Automatic initialization of target tracks is done by using an attributed graph of the
SPsin τ frames, as shown in Figure 2. The attributes of each node in the graph are: 1. the
frame number, 2. the centroid, 3. shape parameters, 4. parent id and child id. Edges are
present between nodes whose frame number differ by 1 as shown in Figure 2. The weights
of these edges is the value of match measureDs between the nodes. The nodes with frame
number 1 are considered as source nodes and nodes with frame numberτ are considered
as destination nodes. From all source nodes the shortest paths to all destination nodes are
computed using Dijkstra’s algorithm. Amongst these shortest paths, different paths have
different sum-of-weights. Of these paths the one with smallest sum-of-weights is chosen
as a valid target track and is called the path of least sum-of-weights. The nodes of this
path are removed from the graph to give rise to a new graph with reduced number of nodes
and edges. The same process is repeated until there is no node in any one of theτ frames
in the graph or the path of least sum-of-weights amongst the computed shortest paths at
any iteration is greater than a heuristic threshold. For new targets which enter the FOV
when tracking of other targets is in progress, another attributed graph forSPswhich have
no match with the targets being tracked is maintained. The path of least sum-of-weights
amongst all the shortest paths from the source nodes to the destination nodes is computed
as described earlier. The source nodes are from the first layer formed by the unmatched
SPsin frame(n− τ +1), wheren is the current frame number. The destination nodes are
the unmatchedSPsin framen. A track for a new target is confirmed by appearance of



least sum-of-weights path amongst all the shortest paths possible from the source nodes
to the destination nodes.

4 Multi-camera Target Tracking

The task of multi-camera tracking is to reconstruct the paths taken by the targets that
appear in the FOVs of multiple cameras and also to find the correspondence between
targets in the different FOVs. To track objects in the blind region of the cameras we
transform the views from each camera to a common ground plane view containing all
the camera views using homography and also use a Kalman filter in this common ground
plane view to track the targets. To compute the homography transform matrixH at least
4 corresponding points between each camera view and ground plane is required. We
use more than four point correspondences, obtained manually, to computeH using least
squares. To find theH matrix, we make actual measurements to find the co-ordinates
of points on the ground. ThisH matrix then gives the transformation of the points in
the FOV of the camera to the points on the horizontal ground plane.H can be seen as
a transformation from the camera image to a planar image of the ground as seen from a
camera high above the ground (see Figure 3) with the blind region shown as black.

Thus if there aren cameras in the multi-camera setup, there will ben transforma-
tion matricesH1, H2...Hn where theith transformation matrixHi gives the homography
transformation between the FOV of theith camera and the ground plane view.

4.1 Tracking in blind regions between cameras

A Kalman filter for target motion maintains a state vector which consists of the co-
ordinates of the centroid of the target and its velocity in the common ground plane view.
The state vector of the Kalman filter for thekth target in framen is written as:
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whereXc andYc are the co-ordinates of the centroid andVx andVy are thex andy com-
ponents of the target velocity in the ground plane view. We assume a constant velocity
model for the targets with the state equation:

Sn+1
k = A Sn

k +ωk (4)

whereA is a 4×4 identity matrix andωk is 4×1 zero mean process noise vector.
The position and motion measurementZn

k is given by the measurement equation:

Zn
k = N Sn

k +δ k (5)

whereN is a 4×4 identity matrix andδ k is a 4×1 zero-mean measurement noise vector.
Suppose the centroid of the target in the FOV of camera 1 are (xc, yc). Then the
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In every frame the target centroid (Xc, Yc) is found and the Kalman filter associated with
that target is updated using these measurements. Thus the filter learns the motion of the
target in the ground plane view. If the target is present in the FOV of camera 2,H2 is used
in (6).

When the target exits the FOV of a camera, the Kalman filter continues to predict the
movement of the target in the inter-camera region in the ground plane view without any
further measurements, yielding the most likely path of the target. Now if a target enters
the FOV of another camera, the problem of correspondence matching is to determine if
this target is the same as a target which exited from the FOV of camera 1. We present a
Gaussian formulation for this correspondence matching problem.

4.2 Gaussian formulation for correspondence matching

When a new target enters the FOV of a camera the parameters of the target track are
obtained using the graph algorithm discussed in Section 3.1. The track parameters are:Xc,
Yc, the target centroid;Vx, Vy, the Kalman filter estimates of the velocity of the target;W,
the width of the target;L, the length of the target; andt, the time of observation in frame
numbers. The width and length of the target are the major and minor axes of the fitting
ellipse obtained from each camera view and not the ground plane view. For any target in
the FOV of a camera, we define an observation vectorO using target measurements, as:

O = [X,Y,Vx,Vy,W,L, t] (7)

HereX, Y, Vx, Vy, W, andL are treated as independent random variables for obtaining
a probabilistic match measure for target identity.

Let ∆X be the displacement of the target from its original position during time∆t.
Since we assume a constant velocity model,∆X can be written as:

∆X = Vx×∆t (8)

However, the velocity of the target may vary a little over the distance in which case
(8) will not be exactly satisfied. We model∆X as Gaussian distributed random variable
with mean equal toVx×∆t and a variance ofVarx obtained using training data.

Thus
∆X ∼ N(Vx×∆t,Varx) (9)

Or
∆X−Vx×∆t ∼ N(0,Varx) (10)

Similarly we model∆Y as a Gaussian distributed random variable with mean equal to
Vy×∆t and variance ofVary so that:

∆Y−Vy×∆t ∼ N(0,Vary) (11)

Suppose a targeta is observed in the FOV of camera 1 and some time later a targetb
is observed in the FOV of camera 2. These give rise to observation vectorsOa

1 andOb
2:
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The changes in width and length of the targets as seen from the individual camera FOVs
are also modeled with Gaussian distributions. The observed width and length of the target
in one camera may be different from the width and length of the same target in the other
camera. Assuming fixed location and orientation of the cameras, the change in length and
width of the target from camera 1 to camera 2 can be written as:

Wb
2 = Cw12×Wa

1 (14)

Lb
2 = Cl12×La

1 (15)

whereCw12 andCl12 are constants for camera pair 1 and 2. These constants are deter-
mined from training data for the multi-camera setup. Since the location of the cameras are
fixed, when an object enters the FOV of one camera after exiting from the FOV of another
camera, its width and length in the second camera can be related to its width and length
in the first camera by constants of proportionality, which areCw12 andCl12, respectively.

Equation (14) and (15) will not always hold exactly due to noise. This noise can be
due to the measurement noise and the noise from foreground segmentation errors. We
modelWb

2 as Gaussian distributed with meanCw12×Wa
1 and varianceVar12

w , andLb
2 as

Gaussian distributed with meanCl12×La
1 and varianceVar12

l , or equivalently:

∆W12
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12) (16)

∆L12
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We define a vectorO12
ab for a targeta which exits the FOV of camera 1 atta and has

newly appeared as targetb in camera 2 at timetb as

O12
ab , [∆X12
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We define a match measureM in terms of likelihoods to determine if a vectorO12
ab

from targetsa andb in different camera views are of the same target as follows:

M(a = b/O12
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ab)Ly(∆Y12
ab )Lw(∆W12

ab )Ll (∆L12
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where∆X12
ab ∼N(Vxa×(tb−ta),Var12

xab
), ∆Y12

ab ∼N(Vya×(tb−ta),Var12
yab

), and∆Wab
12

and∆Lab
12 are distributed as in (16) and (17), respectively.

Our interest is to determine if the target entering the FOV of one camera is the same
as the one that exited the FOV of another camera. Thus we calculateM for a new object
that enters the FOV of any camera in the ground plane view. We use the observations
of the targets at the entry/exit locations to get the observation vectors. By using a suit-
able threshold onM, the correspondence matching problem between the cameras can be
solved. The number of correct matches in the multi-camera tracking system largely de-
pends on the threshold selected for the value ofM in (21), obtained using training data.
In our system we have usedM = 350.



5 Tracking results

The proposed system is implemented and tested for a two-camera system monitoring
traffic from two sides of an over-bridge. Figure 3 shows the FOVs of two cameras in
(a), (b) and (d), (e) and the derived ground plane views in (c) and (f). The latter also
show the tracking results. Figure 4 shows another example of target tracking results. The
track for carrier van in Figure 3(a) is shown. It has been correctly tracked in the blind
region across the camera views and correct correspondence matching has been achieved
in spite of significant change in target size and color information due to change in camera
angle. The figures show successful tracking of another car and van. Even though the
roads in Figures 3(a) and 3(b) are sloping downwards the tracking results are still good.
Our system is a real time system as it processes 12 frames/second (for each camera, frame
size is 352×288) for a two camera setup on a Pentium 4 3.06 GHz machine. The success
rate of our system for correspondence matching is 85%.

(a) (b) (d) (e)

(c) (f)

Figure 3: (a) and (d) are the views from camera 1. (b) and (e) are the views from camera
2. (c) and (f) shows the ground plane view constructed using the homography transform.
The vehicles in the FOVs of the cameras are being tracked in the ground plane view (The
vehicles are not shown in the ground plane view since it is computationally intensive to
calculate the ground plane view for every frame). The trajectories of the car and truck are
assigned tracks as seen in (c). When the car and truck exit the FOVs of the cameras, their
path in the blind region is tracked as seen in (f).



(a) (b) (d) (e)

(c) (f)

Figure 4: (c) shows the tracking results after the correspondence matching is done using
the proposed Gaussian formulation for the car and truck in Figure 3. The Kalman filter
tracks the vehicles in the blind region between the cameras. (f) shows some more tracking
results.

6 Conclusion

In this paper we have proposed a solution for multi-camera correspondence matching and
tracking of targets in cameras with non-overlapping FOVs. For this, a robust graph based
single camera target track initialization algorithm was proposed which gathers informa-
tion over multiple frames before matching the targets across cameras. The parameters
for correspondence matching were obtained by tracking the shape of the target in the
camera view and motion of the targets in the common ground plane view. The common
ground plane view was obtained by computing the homography of each camera view with
the ground plane. Shape and motion Kalman filters were used to track the targets in the
individual camera FOVs while a motion Kalman filter was used to track the targets in
the ground plane view. The change in position and shape parameters of the same target
across cameras were modeled as Gaussian distributions and we used the latter to compute
the likelihoods for correspondence matching. When the target exits the FOV of a camera,
the motion Kalman filter continues to track the target in the blind region. In [2] the so-
lution is specifically for a system of two widely separated cameras on a highway. Their
main goal was to achieve the correspondence matching of the vehicles on the highway



and the movement of the vehicles in the blind regions between the cameras was not of
interest. Target tracking in the blind region has applications in traffic surveillance sys-
tems to predict the most likely position of a vehicle in the blind region of the surveillance
cameras. Also, the complete path of a vehicle, including its motion in the blind regions
can be visually represented for a network of non-overlapping cameras.

The computations in target matching across cameras can be significantly reduced by
using the knowledge of camera topology. Camera topology can be computed using meth-
ods as in [1, 11]. The robustness of correspondence matching across camera views can
be further improved by using color calibration of the cameras and then using the color
information along with shape and motion to match the targets across cameras.
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