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Abstract

A general framework for 2D multiframe and 3D surface-to-surface mo-
tion estimation is presented in this paper. By viewing a 2D contour sequence
as a pseudo 3D surface, we solve the motion estimation problem for 2D mul-
tiframe and 3D surface-to-surface in a general framework, by estimating the
motion of a ”surface”. The deformation of a ”surface” is modeled using
spline-based motion. This spline-based motion model does not constrain
the motion type in the temporal domain for 2D multiframe motion estima-
tion. For 3D motion estimation, we focus on the relationshipbetween the
underlying nonrigid motion and 3D surface properties. The spline motion
model provides our method certain advantages over other nonrigid shape-
based methods. For example, we do not need approximation of the orthog-
onal parameterization. The small deformation constraint introduced by the
previous surface-to-surface motion estimation methods isalso relaxed in our
method. Experiments on both synthetic and real motion are presented in this
paper.

1 Introduction
Nonrigid motion estimation and recovery of point correspondences are important prob-
lems in computer vision. The applications of nonrigid motion analysis include medical
imaging, face modeling, tracking, among several others. The nonrigid motion estimation
methods can be roughly classified into geometric and physical based methods. The ad-
vantage of geometric (shape-based) methods is that motion is solely estimated from the
visual data.

1.1 Previous Shape-based Methods
Some shape-based methods assume that the change of normals and curvatures are the
minimum during motion. Motion recovery is achieved by minimizing the differences be-
tween these geometry properties of the before-motion and after-motion objects. In [19],
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the shape invariance is combined with geodesic distance to determine point correspon-
dences between surfaces. In [7] the curvature invariance isused to measure the motion of
deformable objects. The shape invariance properties are also used in [8], which is based
on the popular ICP [3][20] registration method but has been extended to the nonrigid
situation. Some other examples of the shape-based method are [18][16].

These shape-based methods can be applied to both 2D contour and 3D surface situa-
tions. However, in 2D case, none of these methods address themultiframe motion estima-
tion problem which requires additional temporal constraint. Multiframe motion estima-
tion is a more general problem in 2D since the object motion isgenerally represented by
a sequence of contours (instead of a pair). Simple extensionof these contour-to-contour
registration methods to multiframe only takes into accountthe spatial constraint, however
loses the temporal information.

In 3D case, surface-to-surface motion analysis is common since it is difficult to obtain
real-time 3D sequences in order to perform 3D multiframe motion analysis. Noticing
that the intuition behind shape-based methods referred above (we refer these methods as
direct shape-basedmethods) is that the shape properties do not change between surfaces
but curvature and normal are only rigid invariants, some researchers have been developing
differential geometric methods [10][11][12][13] to capture the shape changes caused by
the underlying nonrigid motion. These methods are referredas nonrigid shape-based
methods in this paper.

1.2 A General Motion Estimation Framework
A 3D surface can be represented as set of 3D pointsX(x,y,z), while one point on the
tth frame of a sequence of 2D contours is given asX(x,y,t). If we take the temporal di-
mensiont of a 2D sequence as a special ”spatial” dimension, the 2D contour sequence
can be viewed as a pseudo 3D surface in thex− y− t space. We solve the motion esti-
mation problem for 2D multiframe and 3D surface-to-surfacein a general framework, by
estimating the motion of a ”surface”. The ”surface” could be a real 3D surface in the
x−y−zspace for the surface-to-surface registration or it could be a pseudo 3D surface in
thex−y− t space for 2D multiframe registration. Motion of a given 3Dx−y−zsurface
is between this surface and anotherx− y− z surface while motion of a pseudox− y− t
surface is within the same surface and is between points on consecutive frames.

We model the ”surface” motion using a GRBF (Gaussian Radial Basis Function) to
solve the 2D multiframe and 3D surface-to-surface motion estimation problem. 2D multi-
frame motion estimation for heart has been presented in [15]but this method is restricted
to periodic motion and a periodic mapping function has to be estimated. By viewing a 2D
contour sequence as a pseudox−y− t surface and modeling the ”surface” motion with a
GRBF, we do not restrict the motion type of the 2D contour. Additional temporal motion
model of 2D multiframe is not required in our method and is incorporated into a single
GRBF with the spatial motion.

For 3D surface-to-surface nonrigid motion estimation, we focus on the relationship
between the underlying nonrigid motion and 3D shape properties. This is similar to
nonrigid shape-based methods[10][11][12][13]. In these previous nonrigid shape-based
methods, motion models are all defined in different local coordinate systems for differ-
ent points on the before-motion surface since the basic relationship between underlying
motion and shape properties is described in a local coordinate system. These definitions
introduced two problems. First, the motion defined in the local coordinate system has no



explicit physical meaning. Second, the motion consistencyover the entire motion field
as a whole cannot be guaranteed with local motions defined in different local coordinate
systems. We still utilize the nonrigid shape relationship defined in thelocal coordinate
system but model the surface motion with asingleGRBF. In addition, we relax small
deformation constraint to allow higher order deformations. Details of the advantages of
our 3D motion estimation method is presented in Section 4.

2 Nonrigid motion modeling: GRBF
In this paper, we model the nonrigid motion of a ”surface” using the GRBF (Gaussian
Radial Basis Function). The radial basis function providesboth global and local control
of deformation. It has been widely used in computer vision and medical imaging, such
as image registration [4][9], image warping [2] and surfacereconstruction [5]. The basis
function of RBF can be thin plate spline (TPS), Multiquadric, linear or Gaussian [9][2][4].
Compared with other RBFs, Gaussian radial basis function (GRBF) is localized in scope
and gives a significant response only in a neighborhood around each control point. It is
more biologically plausible since its response is bounded.

Given a ”surface”, the motion estimation problem can be treated as recovering the
displacement for each point on this surface. For 2D multiframe, the displacement of each
point on the pseudox−y− t surface starts from this point and ends at a point on the same
pseudo surface. The starting and ending points are located in consecutive frames , e.g. the
tth and(t +1)th frames, of the 2D sequences. For 3D surface-to-surface, thedisplacement
of each point on the given before-motionx−y−z surface starts from this point but ends
at a point on anotherx−y−zsurface (the after-motion surface).

The displacement field can be described using a GRBF which interpolates the dis-
placements1 at intermediate points using the displacement values at given control points.
If there aren control points, a GRBF ind dimensions, denoted byS(X) is composed of
d functions such that:S(X) = [ f1(X), ..., fk(X), ..., fd(X)] where fk(X) is the displace-
ment function of pointX in thekth dimension.fk(X) has a global component and a local
component:fk(X) = Qk(X)+ ∑n

i=1 αikg(r2
i ).

The global component,Qk(X) is usually a global affine. i.e,Qk(X) = a0kx+ a1ky+
a2kz+ a3k whend = 3. The local component,∑n

i=1 αikg(r2
i ), is the sum of a weighted

elastic basis functiong(r2
i ) = e−r2

i /δ wherer i denotes the distance from the point of inter-
est,X, to theith control point.δ is the Gaussian locality parameter.αik are the weighting
parameters.

For convenience, we define a GRBF parameter vectorP = [P1, ...,Pk, ...,Pd]
T where

Pk is the parameter vector for thekth dimension. In 3D case, the components ofPk are the
global affine parametersa0k,a1k,a2k,a3k and radial parametersαik, i = 1, ...,n.

3 2D Multiframe Motion Estimation
3.1 Motion Model for 2D Multiframe
Assume that the boundary of a moving object has been extracted from 2D images. A se-
quence of 2D contours is available after the extraction. Forunderstanding and character-
izing the object motion, one must first obtain the point correspondence between contours
of consecutive frames. To ensure that the frame-to-frame correspondence gives a consis-
tent point-tracked trajectory, point correspondence recovery and motion estimation based

1In this paper, we use the termsdisplacementandmotioninterchangeably.
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Figure 1: Spatio-temporal Gaussian functions with differentλ . Note that whenλ changes,
the distribution of this Gaussian function varies in thet dimension while it is the same in
thex dimension.

on multiframe is a better choice than contour pair. Multiframe estimation combines the
spatial and temporal constraints into a single framework. The estimation between con-
tour pair (contour-to-contour) loses the temporal information since it is only performed
on consecutive frames.

A potential application of our 2D multiframe motion estimation method is tracking the
motion of a contour representing human tongue surface from asequence of 2D ultrasound
images. In an ultrasound image, only part of human tongue surface is presented thus the
surface is extracted as a open contour. Suppose a sequence ofopen contours is available
and the open contour at time instancet has the Monge formy = yt(x). For a pointX(x,t)
which has spatial coordinate(x,yt(x)) and located on thetth frame, the displacement
∆x(X) of the x dimension will uniquely decide the motion of this point. This motion
can only move pointX(x,t) to some pointX′(x′,t ′) on the(t + 1)th frame wherex′ =
x+ ∆x,t ′ = t + 1. ∆x(X) is modeled as a spatio-temporal GRBF in which the control
points are sampled evenly from ax− y− t pseudo surface formed by the 2D contour
sequence. That is, control points are picked up from multi-frames of the sequence. With
this spatio-temporal modeling,∆x(X) is not only influenced by control points on thetth

frame, but also interpolated using displacements of control points through multi-frames.
Temporal information is incorporated naturally since motion of each frame will affect not
only itself but also other frames in the sequence. In anotherwords,∆x(X) is modeled as
a function of the GRBF parameter vectorP: ∆x(X,P).

Note that for a pointX(x,t), the spatial and the temporal parameters are of different
nature, they must be treated differently. The distance frompoint X(x,t) to theith control
point is defined as:

r i = (∆s2 +(λ ∆t)2)1/2 (1)

where∆s is spatial distance in thex dimension and∆t is the frame difference between
point X(x,t) and theith control point.λ is the nonuniform parameter which controls the
temporal motion. Largerλ indicates less uniform temporal motion. With the distancer i

defined in Eq. 1, the Gaussian functiong(r2
i ) becomes a spatio-temporal kernel function

which has nonuniform effect in thex andt dimensions. Examples of the spatio-temporal
Gaussian functions are shown in Figure 1.

3.2 2D Multiframe Correspondence Recovery
The displacement∆x(X,P) from pointX(x,t) to the corresponding pointX′(x+∆x(X,P),t +
1) is decided by the following criterion functions: Euclideanpoint distanceEd, differ-



ences in the normalEn and curvatureEk, integrated over multiple frames:

Ed(P) = |y(x)−y′(x+∆x(X,P))|2 En(P) = |n(x)−n′(x+∆x(X,P))|2 Ek(P) = |k(x)−k′(x+∆x(X,P))|2. (2)

Wheren′ and k′ denote the normal and curvature of pointX′(x+ ∆x(X,P),t + 1),
respectively.

The GRBF parameter vectorP that minimizes the above criterion functions is esti-
mated using the Gauss-Newton optimization technique as [6]. The criterion functions are
approximated using a Taylor approximation. For example:

Ek = |k(x)−k′(x+ ∆x(X,P0))−▽k′JP(P−P0)|2 (3)

whereP0 is the GRBF parameter vector estimated from the previous iteration or the initial
value of P in the first iteration.▽k′ denotes the derivative of the curvaturek′ on the
(t +1)th frame.JP is the Jacobian matrix which denotes the matrix of partial derivatives
of ∆x with respect to the unknown components ofP. For example, if the global affine of
GRBF is the 1D affinea0x+a1 and the radial kernels areg(r2

1), ...,g(r2
n):

JP = [x,1,g(r2
1), ...,g(r2

n)]. (4)

P can be resolved from set of linear equations derived from Eq.3 and the similar
approximations ofEd andEn. The linear equation ofEk at one pointX(x,t) is:

▽k′JP(P−P0) = k(x)−k′(x+ ∆x(X,P0)). (5)

Similar linear equations forEd andEn can be obtained. The set of equations is then
solved as aweighted least-square(WLS)problem with weighting parameterswd,wn,wc

for Ed,En andEc, respectively.
For fast and steady convergence, a coarse-to-fine algorithmis implemented to recover

the GRBF parameter vectorP. The 2D contours are first transformed to the Fourier do-
main [17]. High frequencies are filtered to smooth the contour. Curvature and normal
are calculated according to the current smooth contours. Recovered GRBF parameters
from current level are input to the higher level by increasing the filtering threshold in the
Fourier domain. The whole process stops at a fine level.

4 3D Surface Motion Estimation
Similar to 2D multiframe motion estimation, motion betweensurfaces is modeled using a
GRBF for 3D surface-to-surface motion estimation. Different with the direct shape-based
method, the shape relationship between two surfaces is described by underlying nonrigid
motion in our method. Although similar relationship has been used in some previous
nonrigid shape-based methods, our method differs from these methods due to our GRBF
motion modeling. Small deformation constraint is also relaxed in our method.

4.1 Background
In this section we present the background for the unit normalchanges under nonrigid
motion. Letr = [u,v,w]T (usually we can writew = f (u,v), thusr can be represented
in the parametric form:r = r(u,v)) denote a point in the local coordinate system which
is defined for each point of interest on the before-motion surface. Lets(r) denote the



displacement function in the local coordinate system; the corresponding point ofr on the
after-motion surface can be defined asr′ = r + s. The motion estimation problem now
becomes the problem of finding the best displacements(r) for each point of interest.

Theunit normaln′ of the after-motion surface is related to theunit normaln of the
before-motion surface by the underlying motions as [14]:

n′ = n− n× rots
1+ θ

(6)

whereθ is modulus of dilation,θ = D′−D
D . D =

√
EG−F2 and E, F, G denote the coeffi-

cients of the first fundamental form of a surface. rots = 1
E ru× su + 1

Grv× sv.
The above equation is the basic nonrigid shape relationshipwe used for 3D surface-to-

surface motion estimation. Note that the previous nonrigidshape-based method [10][11][12][13]
has an additional approximationθ ≪ 1, which leads to the nonrigid shape relationship for
small deformation:

n′ = n−n× rots. (7)

Note that the crucial requirement of Eqs. 6 and 7 is the orthogonal parameterization.
Previous nonrigid shape-based methods approximate the orthogonality at points inside a
local patch around each point of interest. In our approach, the local patch around each
point of interest is not required for the motion recovery andonly the orthogonal parame-
terization at the point of interest is needed, which can be easily guaranteed by constructing
a principal local coordinate systemat each point of interest [1].

4.2 3D Surface-to-surface Correspondence Recovery
With regularly subsampled control points, the displacement S(X) of each pointX on the
before-motion surface is interpolated by the displacements of the control points with a
GRBF.

Note that the GRBF displacementS(X) is defined over the whole surface, thus it is
represented on the world coordinate system. While the relationship between unit normals
of the before-motion and after-motion surfaces only hold inthe principal local coordi-
nate systemconstructed at each point of interest, an additional step that transforms the
displacementS in the world coordinate system to the displacements in theprincipal lo-
cal coordinateis necessary. For each point of interest, given the unit normal n as thez
axis and two principal directionsr1 andr2 as the other two axes of theprincipal coor-
dinate system, a rotation matrix that transforms (omit the translation) acoordinate point
from the world system to the local system can be defined:R = [r1r2n]T . Thus the dis-
placementS defined in the world coordinate system can be transformed to theprincipal
local coordinate systemwith this rotation matrix:s(r) = RS(X).

Recall thatP is the GRBF parameter vector, we can re-writeS(X) ands(r) asS(X,P)
ands(r,P). Eq. 6 now can be expressed withP as the unknown parameter:

n′(r + s(r,P)) = n(r)− A(r,P)

1+ θ
. (8)

WhereA = n× rots.
We now have the following unit normal criterion to decide thepoint correspondence

between surfaces:

EN(P) = |n(r)− A(r,P)

1+ θ
−n′(r + s(r,P))|2. (9)
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Figure 2: (a) Performance comparison between ”Multiframe”and ”CC” on the first syn-
thetic sequence. (b) The second synthetic test: first two contours and deformation between
them. (c) The second synthetic test: last two contours and deformation between them. (d)
The second synthetic test: performance comparison between”Multiframe” and ”CC”.

Similar to 2D multiframe approach, the motion vectorP is recovered using Gauss-
Newton technique by combining the above unit normal criterion and the Euclidean dis-
tance constraint. Details of the optimization process can be found in [14].

5 Experiments
We performed several tests on 2D sequences and 3D surfaces toevaluate our nonrigid mo-
tion estimation method. In 2D tests, we compare our multiframe method (”Multiframe”)
to the contour-to-contour method (”CC”), which is the general approach used in [7][18]
and [16]. In 3D tests, our nonrigid shape-based method is compared to Wang’s shape-
based method (”Wang’s”) [19] and the previous nonrigid shape-based method [12] which
is restricted to small deformation (”SD”).

In order to make quantitative comparisons, We definecorrespondence error cerr =
||p′− p′c|| for both 2D and 3D tests, wherep′c is the recovered corresponding point andp′

is the true correspondence point for the point of interestp on the before-motion contour
(for 2D) or on the before-motion surface (for 3D).

5.1 2D results
The first 2D test is conducted on a synthetic 2D sequence. A Monge form curve (−50≤
x ≤ 50), which is a part of an ellipse (semi-axesa = 60,b = 40), is chosen as the first
contour of the 10-frame sequence. Consecutive frames are obtained by nonuniformly ex-
panding the previous frame with scaling parameters 1.05 and 1.08 for thex andy dimen-
sions, respectively. These 10 spatio-temporal contours form a pseudox− y− t surface.
We apply our multiframe method to this ”surface” and the point correspondence between
consecutive contours is recovered. The ninecorrespondence errorsby our multiframe
method is shown in Figure 2(a) and compared with the results from contour-to-contour
estimation. Significant improvement of ”Multiframe” over ”CC” is observed due to the
fact that temporal information is incorporated in the multiframe method.

To test our method with contours in real life and with complexmotion, we picked
a tongue contour as the starting contour to create a contour sequence. Each subsequent
contour in this sequence is obtained by deforming the previous contour with a TPS trans-
formation. The coefficients of the TPS were sampled from a Gaussian distribution with
zero mean. The first two contours of such a sequence are shown in Figure 2(b). Defor-
mation between these two contours is also shown in the same figure by comparing the
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Figure 3: MSD value comparisons on real tongue sequence.

original regular square grid (dashed lines) with its transformed grid (solid lines). There
are ten contours in this sequence. The last two contours of the same sequence and the
deformation between these two contours are shown in Figure 2(c). Comparison between
”Multiframe” and ”CC” is presented in Figure 2(d). The average error of ”Multiframe”
is 0.55 while it is 0.59 in average for ”CC”. Overall performance of ”Multiframe” is still
better than ”CC”. We run the same test hundreds of times by creating the sequence with
different TPS coefficients and similar results are observed.

The last 2D test is conducted on real tongue contour sequences extracted from ul-
trasound images with resolution 640x480. There is no ground-truth correspondence in
tongue contour sequence thuscerr is not available for evaluation. Noticing the tongue
motion is continuous, we interpolate contourCi−1 andCi+1 according to recovered corre-
spondence to obtain an interpolated contourC′

i . C′
i is compared with the realith contourCi .

Smaller distance betweenC′
i betweenCi indicates a better correspondence recovery. The

distance measure between two contoursU andV is defined as the Mean Sum of Distance
(MSD): MSD(U,V) = 1

2n(∑n
i=1min j |vi −u j |+ ∑n

i=1minj |ui −v j |) wheren is number of
points on the contour. MSD is a measure of pixel errors between contours. Three tongue
contour sequences are tested. There are eleven frames for each sequence. MSD value
comparisons between ”Multiframe” and ”CC” at even frames are shown in Figure 3(a),
(b) and (c) for three sequences, respectively. The first tongue sequence is obtained from
the speech ”ea”. The second sequence is from the same speech by the same subject but in
different session. The third sequence is the speech ”golly”by a different subject.

5.2 3D Results
The synthetic experiments are first conducted to evaluate the performance of our algo-
rithm quantitatively. Given the before-motion surfaceX = (x,y,X(x,y)) and the after-
motion surfaceX′ = (x′,y′,X′(x′,y′)), we ran our algorithm to recover the correspondence
and compare the result with the ground truth. The initial motion is given by atrivial cor-
respondencewhich is defined asx′ = x, y′ = y andz′ = X′(x′,y′).

We show our results on the surfaceX (a Monge patch,−60≤ x≤ 60,−60≤ y≤ 60)
of an ellipsoid with semi-axes lengthsa = 120,b= 110,c= 90. The after-motion surface
X′ is obtained by scalingX with different parametersδx,δy and δz for the x, y and z
dimensions, respectively. The synthetic experiments are conducted for several situations.
We present a typical such experiment whereδx = 1.15, δy = 1.18 are fixed whileδz is
varied from 1.1 to 1.2 with a step 0.01. The correspondence was recovered for these
eleven situations.

The results of our algorithm are also compared against Wang’s shape-based method
[19]. We also recovered the correspondence with Eq. 7 which is used in the SD method
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Figure 4: (a) Correspondence errors of the first synthetic 3Dtest. (b) (c) and (d) are three
examples of the synthetic 3D test with complex motion. (b) Initialization: cerr = 3.16.
SD:cerr = 0.84. Our method:cerr = 0.60. (c) Initialization:cerr = 2.37. SD:cerr = 0.98.
Our method:cerr = 0.87. (d) Initialization:cerr = 2.84. SD:cerr = 0.74. Our method:
cerr = 0.67.

[12]. The initialcorrespondence errors, recoveredcorrespondence errorsof our method,
Wang’s method and SD method are shown in Figure 4(a). One can see from this figure
that our method outperforms both Wang’s and SD method.

Similar to the 2D test, we tested our surface-to-surface motion estimation method with
complex motion. The after-motion surfaceX′ is deformed fromX with a TPS transfor-
mation. Three examples are shown in Figure 4(b), (c) and (d) .In these three figures,
the recovered 3D displacement (dash) by our method is projected to thexy plane and
compared with ground truth displacement (solid). Wang’s method fails for these complex
motion and our method still outperforms the SD method. See Figure 4 for details.

Our method is also evaluated with real motion. The real motion of an object is
recorded by stereo imaging at two time instancest1 and t2. Object motion betweent1
andt2 is reconstructed from the motion of some feature points. Theobject motion is then
mapped from the object space to the space of the surfaceX; after-motion surfaceX′ is de-
formed fromX according to the mapped real motion. The details of the motion mapping
can be found in [14].

The first evaluation of real motion is conducted with the paper bending motion. We
also evaluated our algorithm with two types of real face motions. First is the motion from
a neutral to a smile face and the second is from the neutral face to an open-mouth face.
Feature points are marked in these two face tests.

In total, five deformations are tested for paper bending. Theinitial trivial correspon-
denceerrors, recoveredcorrespondence errorsby our method and SD method are shown
in Figure 5(a). Results for these five small-to-large paper bending deformations are shown
from left to right. In all situations our method is better than the SD method. As the de-
formation increases, correspondence error increases for both methods but the error of SD
method increases faster than our method as expected. This shows that the small deforma-
tion requirement of Eq.7 is relaxed in Eq.6, which is used in our method. Correspondence
errors of five small-to-large smile and five small-to-large open-mouth deformations are
also shown from left to right in Figures 5(b) and (c), respectively. Similar results as the
paper bending experiment are observed in smile and open-mouth experiments.
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Figure 5: Correspondence errors.

6 Conclusion
A general framework for 2D multiframe and 3D surface-to-surface motion estimation
is presented in this paper. Experiments show that our 2D multiframe method is better
than the contour-to-contour motion estimation method and our surface-to-surface method
outperforms previous nonrigid shape-based methods. Future works include developing
a radial basis function with compact support for the 2D multiframe method in order to
supply stronger control in the temporal domain. For the 3D surface-to-surface motion
estimation method, combining the nonrigid Gaussian curvature relationship with a single
spline-based motion is our ongoing research.
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