Learning to detect low-level features

Peter Hall and Martin Owen
Department of Computer Science
University of Bath
Bath, BA2 7AY
pmh | cspmjo@cs.bath.ac.uk

Abstract

We introduce a method to detect low-level features that is prescriptive (as
Canny edge-detection is) but trained by a user. The user simply chooses fea-
ture classes and points to class instances. Given a input image, we compute
a probability map that indicates how likely it is to belong to each of the user-
defined classes; so combining different kinds of feature detector into a single,
user-trainable system. This paper explains how we characterise features, how
we train and detect, and gives an algorithm that automatically determines fea-
ture scale. We empirically compare the method to standard edge and corner
detectors, showing a measurable advantage in each case.

1 Introduction

Low-level feature detection has long been of major interest to Computer Vision. Attention
has traditionally been directed toward developimgscriptivemethods; that is, methods

in which the algorithm’s designer provides a prior definition of the feature to be detected.
The literature is vast, but typical features/detectors include Canny edges [2], Harris cor-
ners [7], and (to a lesser extent) ridges [8]. Prescriptive systems have many advantages:
they can be mathematically elegant, with useful analytic properties; they can be compu-
tationally efficient; and they are well known.

Yet a characteristic of prescriptive methods is that they tend to disagree with humans.
For example, a typical edge-map will both admit and omit edges when compared to an
edge-map produced by humans: in so far as line-drawings and edge-maps are analogous,
edge-maps are rather poor line-drawings. There is good reason for the computer vision
community to care about this. Line-drawings are almost never intended to faithfully re-
produce the pattern of light on some surface (such as the retina). Instead, the purpose of
line-drawings is to convey information to the viewer: line-drawings are salience-maps in
the sense that important elements are highlighted, but unimportant detail is suppressed.
It follows that the more closely a detector agrees with a human, the more “information
efficient” it likely to be.

Of course, humans disagree with one another — each one of us may produce a dif-
ferent drawing of the same scene — but human/human disagreements are usually smaller
than human/machine disagreements. Evidential support for this claim comes from Mar-
tin et al. [9], who plot a scatter-graph showing “recall” verses “precision” for a variety
of edge detectors and many humarRedall probability that a ground truth element is

BMV C 2004 doi:10.5244/C.18.36

detectedPrecision probability that a detected element is a ground truth element.) These
graphs show humans cluster together, exhibiting high recall and high precision; they in-
variably out-perform all machine-based detections. Furthermore, the data suggest there is
sufficient agreement between humans to make the notion of “average human” a meaning-
ful one, indeed the authors plot a “median human” curve.

This paper introduces a method for low-level feature detection in which better agree-
ment with humans is an explicit objective. Our system is a classifier that requires user
training, and so is in line with recent work such as that of Maetiral. [9] who allow
users to train a classifier to detect boundaries in natural images, the boundaries divide ho-
mogeneous regions in colour, texture, and brightness. The spirit of our approach is seen
also in the work of Konishéet al[14], who provide a trainable system for statistical edge
detection. We are unigue in several ways:

e We provide a multi-classifier in which we allow users to specifytimeof feature

"o

they wish to detect, such as “corner”, “edge”, or “ridge”.
e We provide separate terms faisibility andcoherence
e We automatically adapt to feature scale.

Our feature detector is based on circular sampling. Smith and Brady have already
argued in favour of circular sampling [1]. Kger and Felsberg [4] use radial-polar coor-
dinates to compute the “intrinsic dimension” of features, which enables them to classify
features as flat, edge, or corner; their method is prescriptive, they make no provision for
other possible feature types. Mart al. [9] also use a circular windows; they make
use of “oriented energy”, but they do not classify the boundaries they detect; we base our
characterisation on the Fourier transform and classify boundaries.

2 Learning and detecting low-level features

In this section we describe how our classifier is trained, and how it operates. We first
define what we mean Rypein Section 2.1yisibility in Section 2.2coherencendscale

in Section 2.3, and provide an algorithm in Section 2.4 that uses these properties to detect
features in an image.

2.1 Feature classification

Low-level features are identifiable patterns of colour in a window, that is, features are
classes of pattern. Different applications, and different users, make use of different
classes, hence the literature contains “edge detectors”, “corner detectors” and so on. We
take the view that features should not be defined in advance but learned from the user,
who chooses the number of features classes, and provides examples of features from each
class.

Our training method is very simple. The user moves a ring over an image, and clicks
a mouse button whenever they decide that the window isolated by the ring is an example
of a feature for a given class; the keyboard is used to swap between classes. We force the
user to provide examples for an additional class we call “other” that contains examples

corner grazing edge

Figure 1: A sampling window and several common-low level features: edge, corner, and
ridge. Notice that at the outer ring, a grazing edge gives exactly the same signal as a
corner.

of features of no interest to the user. This class is necessary to fully characterise the
population distribution in feature space.

We use a ring as a marker because we use a circular sampling window. A pixel with
locationx = (x,y)" is the centre of the window. The RGB image is a three-valued function
c(p, 8) that we sample at discrete values of radiuand anglef. We process this into
an m-dimensionafeature vectoy f, wherem is the number of angular samples (we use
m= 16), and estimate the magnitude of the angular differential

using forward differences and the Euclidean distance between RGB colours. Then char-
acterise this differential signal using

(1)

__|Fe)]|
1@ Gouoppe X
flw) — flw)\f(0) ®)

where.# is the Fourier transform. Using# | ensures orientation and mirror invariance.
Normalising by unit power enhances discrimination between some feature classes. Re-
moval of the “dc” term,f (0), removes dependence on mean luminance. These invariances
mean that features of a given type, edges say, all map to the same point in the parameter
space we use, thus giving a strong signal. This is to be preferred over Cartesian based
characterisations in which features tend to be more thinly distributed in parameter space;
edges, for example, would lie on a ring-like manifold. This approach to feature character-
isation may remind the reader of Zernike moments [11]; we have implemented Zernike
moments in addition to the above Fourier transform and found no advantage.

Now suppose the user chood¢$eature classes, the classifier g 1 classes in it,
because of the 'other’ class. The user providesxamples in théth class. The posterior
probability that a window belongs to claisis estimated using Bayes' rule:

G0
N PO @

where f is the feature vector of the window. The prior probabilityi), that a window
selected at random belongs to clags

p(i) = zN+1 5)

The class conditional probability(f |i) depends on the population density distribution of
the features in class We have chosen to represent this density with Gaussian Mixture
Model (GMM), using Expectation Maximisation [3] to fit the Gaussian components, and
automatically select the number of compondfjtasing a Bayesian approach [10]. In this
case we have

Ki
p(fli) = kz a9(f; 1. C) (6)
=1

in which ay is the prior for thekth Gaussian component, which has ceptreind covari-

ance matrixC,. Thus, to classify a pixel dk,y)" we circularly sample around it, process
the window into a feature vector using the outer-most ring of samples, and plug that into
our classifier to obtain the posterior probability vegpdii f), fori € [1,N+ 1]. Thetype

of the feature is thus [f] = argmaxp(i| f) and B

p(1f)
p(xy) = : (7)
p(N+1/f)

is theN 4 1-dimensional “probability type vector” at pixéx,y) .

This characterisation of features is able to discriminate between the common features
classes. However, normalising the differential boosts noise and can lead to windows
with no visually discernible structure being falsely classified, because it. We therefore
introduce the notion ofisibility, meaning that the colour contrast in a window must be
sufficiently large for any feature to be seen.

2.2 Visibility

We measure the visibility of the windoe(p, 8) using the differential of the colour sig-
nal, but measured ijust noticeable differencgnd) units. Two colours are separated by
one jnd, if they can just be discriminated by the human eye. jnd distance varies with
colour, and many “perceptually linear” colour models exist, such as the CIELAB colour
space [13]. Unfortunately a unit distance in such spaces does not necessarily correspond
to one jnd, so we empirically measured jnd units in RGB space, as explained in [6].
We argue that if a colour space has an associated function that gives the jnd for each
colour, 7(c)), then any colour space will do. We choose RGB because it is used to en-
code images. The consequence of our experiments are two numbers for each colour:
the mean of many trials;(c)), and the variance over the triad€’(c). Together(t,g?)
specify a normal distribution for the likelihood that some distaniethe jnd distance:
p(t) O exp(—(1/2)(t — 7)2/0?)

We can now measure the probability that a feature is visible by measuring the magni-
tude of the total difference in the window. This is proportional to

o\ 1/2
L:Q%mﬁ)) @)

ap
which measures the total RGB colour change, which is a distance in Euclidean space. We
could converL to jnd units by division by the value corresponding to the colour at the

2
10
L |19¢(p.6)
p 06

pixel. However, because we want to compute the probability that the window is “visible”,

we define
pu(X,y) = % (erf ((LZ_GT)) + 1) 9)

whereo andTt are taken from the colour are the window cenfrey)". This is justified
because the probability of visibility as a colour-distahde RGB space is the cumulative
density [y exp(—(1/2)(t — T)2/0?)ck.

2.3 Coherence

The classifier can give some surprising results. We trained to detect 'corners’ and soon
discovered that “grazing edges” — edges that intersect the window but which do not
pass through its centre — are falsely classified as corners. One might suspect that this
is because our classifier considers only the outer-most ring of samples in a window, so
that grazing edges and corners look identical, as seen in Figure 1. Yet using all samples
in a window did not improved matters. This is because corners have a scale in a sense
similar to edges having scale; a “blurred corner” looks flat at its centre, and therefore
resembles a grazing edge, which confuses a classifier because training examples are not
well separated.

Our solution is to introduceoherencewith a role analogous to entropy, but which
takes spatial structure into account. A wind#vis coherent, if any given ring is similar
to any other ring. We define @ancoherenceneasureD, for a window:

1/2
b = 3 (gIC(pl,G)—C(pz,G)IZO (10)
(P1.02)EW

The incoherence at an edge, and at a true corner, is low, incoherence close to but not on
an edge is high. It is tempting to use an analogy with the probability of visibility and
so compute the probability of coherence with an error functimitx,y) = (1—erf((D —
1)/ @))/2. We have found that this reasonable results, but there is advantage in delaying
the computation of this probability until after the scale of a feature has been decided.

We define thescaleof a feature as the smallest radius at which it is probably visible,
computed at a pixel using

R(x,y) = min({p : pv(x,y; p) > 0.5}) (11)

wherepy(x,y; p) is updated notation to allow for the fact that the visibility computation
depends on the scale paramegewvhich is the radius of the windownin() chooses the
smallest element in the set which is its argument. We have deliberately omitted coherence
from this definition of scale, because a feature could potentially be anything (the user may
choose to not use coherence at all).

2.4 The Algorithm

Our algorithm for detecting features first determines scale, then classifies and computes
a coherence measure. The coherence measures are later used to compute a coherence
probability map:

Input a full colour image
FOR each pixel
P < Pmin // Pmin is the smallest useful scale
WHILE py(xy;p) <0.5
R(X,y) = p // record the scale at this pixel
compute p,(X,Y;P)// type probability vector at scale p
compute D(X,y; p) // coherence measure at scale p
ENDWHILE
ENDFOR
// Having scaled and classified, compute coherence ...
FOR each pixel
p =R(x,y) // fetch the local scale
circularly sample the coherence measure map D(X,y) to get a window m(p, 6)
normalise minto the range [0, 1]
set D(x,y) «— m(0,0) // use window centre as new coherence measure
compute pe(X,y) = (1—erf(D(x,y) — 1)/@))/2
ENDFOR
Output probability maps q(X,y) = P, Pc.

,:..::t:::z::w -—-—"f-
@ LR
R

il
R

==

Figure 2: Progress of classification: top-left, a full-colour input image; top-right, output
of the classifier without coherence; bottom-left, the coherence map — note the fall-off
near to but not on edges; bottom-right, the final classification map. Red shows edges,
green ridges, blue corners.

The algorithm outputg(x,y) = P, Pe. The feature is probably visible by construction.
Each “channel” ofEt (x,y), is a probability map that the pixel is of a type (specifically, the
ith class). The produgi(x,y|i) pc(X,y) gives the joint probability that the pixel belongs to
the given type and is coherent. Of course, each probability vgmry) sums to unity,
but there no such guarantee fijix,y). The progress of this algorithm at key-stages in
illustrated in Figure 2 B

3 Results and applications

An important first test of any detector is just to look at some results. We trained a classifier
to detect “edge”, “ridge”, and “corner” features. We took care to train and test on a wide
variety of images types (indoors, outdoors, portraits, landscapes, etc) it may be that re-
introducing rarity would benefit some image classes. We tested on a variety on images —
none of them in the training set. A few results are presented in Figure 3.

The question of scale brings with it the question of how many classifiers are needed:
do we need a classifier for every scale, or will just a few classifiers suffice? To answer
this question we ran our classifier at set scales over hand-prepared ground-truth images
that were not in the training set, but using a single classifier trained at a fixed a scale.
We chose a window of radius 3 because that was the smallest window we in which could
reliably see interesting features (for us, this meant edges, corners, and ridges). We found
that features below that scale were unreliable classified (but recall we could not reliably
see them), but features above that scale we reliably classified, See Figure 4. In fact, the
the classification of a feature remained stable until the window grew sufficiently large as
to cover other objects in the image. On the other hand, windows that contained spurious
patterns, those we had not trained on, tended to be far less stable in their classification
over scale. All the results in this paper were computed using a single classifier trained at
scale 3.

Having established only one classifier is needed, we next validated the features our
classifier found against hand prepared line-drawings. While the Berkeley segmentation
data set [9] was available, this was considered unsuitable as it tended to exclude small
features. We asked humans to sketch a picture, giving no other instruction except “make a
reasonably fine drawing”. No testimage was in the training set. We measured a precision-
recall curve for varying thresholds of summgd, y) vectors. Following Martiret al.[9],
precision is defined as the fraction of detections that are true rather than false; and recall is
defined as the fraction of ground truth data that is detected rather than missed. Precision-
recall curves are preferred over ROC curves because the former do not depend on image
resolution (see [9]).

For comparison with standard methods we computed the P-R curve for Canny edges.
For further reference we plotted data taken from Mastial. [9], showing their method,
and the median human performance; but we did not repeat there experiments. Figure 3
shows results for two images that typify results from all those we used. In these, and in
fact in all other test images, we consistently out-perform the prescriptive methods. We do
about as well as Martiet al, sometimes out-performing them, sometimes not. The goal
of reaching human levels of performance eludes all methods, unsurprisingly.

The corner data from the classifications was also considered independently for com-
parison with Harris corners [7] for the purposes of feature matching between stereo image

stile

venice

uoispaid

recall

recall

Figure 3: Example test images, a canny edge-map, classification (red indicates edges,

green ridges, and blue corners), ground truth, and PR curves.

oot /\/‘_/\‘/—/\‘/\/‘/‘\/;A‘ ,

0.8 bl
— Flats

| -5- Edges
0.7 | Ridges B
| —8- Corners

| Unknown Features

0.6

0.5

0.3

0.2

0.1

0 5 10 15 20 25 30 35

Figure 4: Probability of correct classification over scale. The vertical dotted line shows
scale at 3, the trained scale. The horizontal line shows a probability of correct classifica-
tion of 0.5, above which we consider satisfactory.

pairs. The images ranged from simple block-worlds to noisy outdoor images that included
trees and other foliage.

Corner-maps were produced using both techniques, and prospective matches com-
puted using a simple least-square difference between corner neighbourhoods. Homogra-
phies were then computing using RANSAC [5]. On average less our our corners were
deemed outliers by the RANSAC algorithm (63%) than the Harris corners (75%). If one
knows in advance that this much smaller a fraction of the given corner-map are likely to
be outliers, then the RANSAC algorithm can be run with fewer iterations, a quarter as
many in this case, for full details see [6].

4 Discussion and Conclusions

We have shown that it is possible detect low-level features that are specific to a users
interests. Moreover, the scale at which such features are detected can be automatically
decided, even though training need only take place at a single scale.

Our system out-performs standard detectors and favourably compares with a state-
of-the-art method that fine-tunes its components; it may be our system would benefit by
similarly fine-tuning the visibility, coherence, and type sub-components.

A more basic concern is that although “type” is not prescriptive, “visibility” and “co-
herence” are. The reason for this inconsistency is that including visibility and coherence
measure®s vector elements leads to population distributions that contain sharp discon-
tinuities and so difficult to model with continuous functions (as used by GMMs). Yet

modelling the populations well would allow us to train without prescribing visibility or
coherence, or indeed any other terms we might care to use in the future.

Despite these issues, our approach does respond to user needs, and offers improved
performance over prescriptive detectors. The ability to deal with types of feature is ad-
vantageous; leaves, for example form “ridge noise” that can be filtered away. Moreover,
we have observed that patterns of feature class occur commonly. For example, mouths
are often characterised by a pattern of two corners joined by a ridge, which is flanked by
two edges. If sufficient regularity exists in such patterns, it may be possible to use our
feature classifier as the basis of a more complex pattern recognition system. Work on
constructing a scale-space description, by analogy with Witken [12] is on-going.

References

[1] S.M. Smith & J.M. Brady. Susan — a new approach to low level image processing. Technical
report, FMBIB, Oxford University, 1995.

[2] J.F. Canny. A computational approach to edge detectitFEE Transactions on Pattern
Analysis and Machine Inteligencg(6):34—43, June 1986.

[3] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from incomplete data via
the em algorithmJournal of the Royal Statistical Socie0(1):1-38, 1977.

[4] N. Kriger & M. Felsberg. A continuous formulation of intrinsic dimension.Phoceedings
British Machine Vision Conferengcpages 260-270. BMVA, 2003.

[5] M. A. Fischler and R. C. Bolles. Random sample consensus: A paradigm for model fitting
with apphcatlons to image analysis and automated cartograp@v Computing Surveys
(CSUR) 14:3-71, March 1982.

[6] Reserved for Anonymity. XXXXXX.

[7] C. Harris and M. Stephens. A combined corner and edge detect&rotn 4th Alvey Vision
Conferencepages 189-192, Manchester, UK, 1998.

[8] T.Lindeberg. Edge decection and ridge detection with automatic scale seldatemational
Journel of Computer Scienc5(1):57—74, January 1996.

[9] D.R. Martin, C.C. Fowlkes, and J. Malik. Learning to detect natural image boundaries using
local brightness, color, and texture cubdSEE Transactions on Pattern Analysis and Machine
Intelligence 26(5):530-549, May 2004.

[10] S.J. Roberts, D¢, Husmeier, 1l Rezek, and W. Penny. Bayesian approaches to gaussian mixture
modelling. IEEE Transactions of Pattern Analysis and Machine Intelliger8£11):1133—
1142, 1998.

[11] M.R. Teague. Image analysis via general theory of momejasrnal of Optical society of
Americag 70(8):920-930, 1979.

[12] A. Witken. Scale-space filtring. IRroc. Int. Joint Conf. on Artificial IntelligengeéKarlsruhe,
Germany, 1983.

[13] G. Wyszecki and W.S. Stile<Color Science: Concepts and Methods, Quantitative Data and
Formulae John Wiley and Sons, 2nd edition, 1982.

[14] S. Konishi & A. L. Yuille & J. M. Caughlan & S. C. Zhu. Statistical edge detection: Learning
and evaluating edge cud&EE Transactions on Patterns Analysis and Machine Intelligence
25(1):57-74, January 2003.

