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Abstract

This paper describes a probabilistic framework for recognising 2D shapes
with articulated components. The shapes are represented using both geomet-
rical and a symbolic primitives, that are encapsulated in a two layer hierar-
chical architecture. Each primitive is modelled so as to allow a degree of
articulated freedom using a polar point distribution model that captures how
the primitive movement varies over a training set. Each segment is assigned a
symbolic label to distinguish its identity, and the overall shape is represented
by a configuration of labels. We demonstrate how both the point-distribution
model and the symbolic labels can be combined to perform recognition using
a probabilistic hierarchical algorithm. This involves recovering the parame-
ters of the point distribution model that minimise an alignment error, and
recovering symbol configurations that minimise a structural error. We apply
the recognition method to human pose recognition.

1 Introduction
The task of recognising articulated shapes has attracted considerable interest in computer
vision. The main problem is how to robustly recover correspondence when the object
under study undergoes deformations and the detected feature points defining the object are
subject to noise. One of the most effective ways of developing matching techniques is to
draw on probabilistic and statistical methods. This approach has lead to the development
of point distribution models [1], deformable templates [2] and condensation [3]. One of
the most important modes of variation in a moving shape, especially biological forms, is
that of articulation.

There are a number of ways in which object articulation can be modelled. Perhaps the
simplest of these is to decompose the shape into a skeletal form, consisting of limbs or
branches, and to model the articulation of the branches. The mechanical movement of the
resulting shape can be captured by the rotation of the components. However, in order to
constrain the change in shape to be physically realistic bounds, or distributions, must be
imposed on the rotation angles [4, 5]. Hence, the mechanical constraints on articulation
must be combined with a statistical model of limb movement. In addition to movement
of the limbs, the articulated shape also has a structural composition, since the limbs can
be assigned labels to distinguish them, and the arrangement of the labels can be used to
provide further constraints for shape-recognition.

The aim in this paper is to develop a statistical framework that can be used to recognise
articulated shapes using information concerning limb movement and symbolic constraints
concerning the overall shape structure. To do this, we develop a hierarchical algorithm.
Each shape is represented as an arrangement of articulated limbs. The movement of the
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limbs is represented by a polar point distribution model. The structural component of
the model is represented by a configuration of limb-labels. The recognition architecture
has two intercommunicating layers. The first of these is concerned with limb alignment,
and this aims to recover the lengths and polar angles of the limbs. The second aims to
assign limb-labels so that the overall structure is recovered consistently. The fitting of
this two-level model to data is effected using a variant of the expectation-maximisation
algorithm.

2 Point Distribution Models
The point distribution model of Cootes and Taylor commences from a set training pat-
terns. Each training pattern is a configuration of labelled point co-ordinates or land-
marks. The landmark patterns are collected as the the object in question undergoes rep-
resentative changes in shape. To be more formal, each landmark pattern consists of L
labelled points whose co-ordinates are represented by the set of position co-ordinates
{(x1,y1), · · · ,(xL,yL)}. Suppose that there are T landmark patterns. The t th training pat-
tern is represented using the long-vector of landmark co-ordinates Xt = (x1,y1,x2,y2, · · · ,
xL,yL)T , where the subscripts of the co-ordinates are the landmark labels. For each train-
ing pattern the labelled landmarks are identically ordered. The mean landmark pattern
is represented by the average long-vector of co-ordinates Y = 1

T ∑T
t=1 Xt . The covariance

matrix for the landmark positions is

Σ =
1
T

T

∑
t=1

(Xt −Y)(Xt −Y)T (1)

The eigenmodes of the landmark covariance matrix are used to construct the point distri-
bution model. First, the unit eigenvalues E of the landmark covariance matrix are found
by solving the eigenvalue equation |Σ−αI| = 0 where I is the 2L× 2L identity matrix.
The eigen-vector φi corresponding to the eigenvalue αi is found by solving the eigenvec-
tor equation Σφi = αiφi. According to Cootes and Taylor [1], the landmark points are
allowed to undergo displacements relative to the mean-shape in directions defined by the
eigenvectors of the covariance matrix Σ. To compute the set of possible displacement di-
rections, the M most significant eigenvectors are ordered according to the magnitudes of
their corresponding eigenvalues to form the matrix of column-vectors Φ = (φ1|φ2|...|φM),
where α1,α2, .....,αM is the order of the magnitudes of the eigenvectors. The landmark
points are allowed to move in a direction which is a linear combination of the eigenvec-
tors. The updated landmark positions are given by X̂ = Y + Φγ , where γ is a vector of
modal co-efficients. This vector represents the free-parameters of the global shape-model.
When fitted to an observed set of landmark measurements Xo, the least-squares estimate
of the parameter vector is

γ =
1
2
(Φ+ΦT )(Xo −Y )

3 Shape Representation
Our aim is to use point distribution models to account for shape deformations due to limb
articulation. The model is a two component one. First, we have a limb-model. This ac-
counts for the variations in shape of each of the individual limbs using a point distribution
model to describe the modes of variation of the landmark points about a mean shape. Sec-
ond, we have a limb arrangement model. This is an augmented point distribution model
that describes the arrangement of the centre points of the limbs, and their polar angles.

We are concerned with recognising 2D shapes by modelling segment movement around
the centre of the shape. The shape under study is assumed to be segmented into a set of



K jointed and non-overlapping limbs. The kth limb is represented by a long-vector of
consecutive landmark points

Xk = (xk
1,y

k
1,x

k
2,y

k
2, ....x

k
nk

,yk
nk

)T

The centre-of-gravity of the limb indexed k is

~ck =
1
nk

nk

∑
i=1

(xk
i ,y

k
i )

T

The overall shape is represented by a long-vector of consecutive limb centres C = (~cT
1 ,~cT

2 ,

· · · ,~cT
K)T . The centre of articulated shape is computed by averaging the centre of the limbs

~U =
1
K

K

∑
k=1

~ck

To model the articulated shape, we use a polar variant of the standard point distribu-
tion model [6]. This model allows the primitives to move about the centre of articulation
According to this model the shape is viewed as an arrangement of non-overlapping prim-
itives. Each primitive is represented by mean point ~ck. Limb articulation is represented
by a set of limb-angles. For the kth limb the angle is defined to be

θk = tan−1 U(y)− ck(y)
U(x)− ck(x)

and the angular arrangement of the limbs is represented by the vector Θ = (θ1,θ2, ...,θK)T .
The global movement of the limbs within a shape is specified by the concatenated long-
vector of angles and the centres-of-articulation, i.e. by the vector S = (ΘT ,CT )T .

To augment the geometric information, we assign symbols to the articulated compo-
nents. Each training pattern is assigned to a shape class and each component primitive
is assigned to a primitive class. The set of shape-labels is Ωc and the set of articulated
component or limb labels is Ωs. The symbolic structure of each shape is represented by
a permissible arrangement of limb-labels. For shapes of class ω ∈ Ωc the permissible
arrangement of limbs is denoted by Λω =< λ ω

1 ,λ ω
2 , ... >.

4 Learning Mixtures of PDM’s
In Cootes and Taylor’s method [1], learning involves extracting a single covariance ma-
trix from the sets of landmark points. Hence, the method can only reproduce variations in
shape which can be represented as linear deformations of the point positions. To repro-
duce more complex variations in shape either a non-linear deformation or a series of local
piecewise linear deformations must be employed.

In this paper we adopt an approach based on mixtures of point-distributions. Our
reasons for adopting this approach are twofold. First, we would like to be able to model
more complex deformations by using multiple modes of shape deformation. The need
to do this may arise in a number of situations. The first of these is when the set of
training patterns contains examples from different classes of shape. In other words, we
are confronted with an unsupervised learning problem and need to estimate both the mean
shape and the modes of variation for each class of object. The second situation is where
the shape variations in the training data can not be captured by a single covariance matrix,
and a mixture is required.

Our approach is based on fitting a Gaussian model to the set of training examples. We
commence by assuming that the individual examples in the training set are conditionally
independent of one-another. We further assume that the training data can be represented
by a set of shape-classes Ω. Each shape-class ω ∈ Ωs has its own mean point-pattern Yω



and covariance matrix Σω . With these ingredients, the likelihood function for the set of
training patterns is

p(Xt , t = 1, ...,T ) =
T

∏
t=1

∑
ω∈Ωs

p(Xt |Yω ,Σω ) (2)

where p(Xt |Yω ,Σω ) is the probability distribution for drawing the training pattern Xt

from the shape-class ω . According to the EM algorithm, we can maximise the likelihood
function above, by adopting a two-step iterative process. The process revolves around the
expected log-likelihood function

Qn+1 =
T

∑
t=1

∑
ω∈Ωs

P(t ∈ ω |Xt ,Y
(n)
ω ,Σ(n)

ω ) ln p(Xt |Y (n+1)
ω ,Σ(n+1)

ω ) (3)

where Y (n)
ω and Σ(n)

ω are the estimates of the mean pattern-vector and the covariance matrix

for class ω at iteration n of the algorithm. The quantity P(t ∈ ω |Xt ,Y
(n)
ω ,Σ(n)

ω ) is the
a posteriori probability that the training pattern Xt belongs to the class ω at iteration
n of the algorithm. The probability density for the pattern-vectors associated with the
shape-class ω , specified by the estimates of the mean and covariance at iteration n+1 is

p(Xt |Y (n+1)
ω ,Σ(n+1)

ω ). In the M, or maximisation, step of the algorithm the aim is to find
revised estimates of the mean pattern-vector and covariance matrix which maximise the
expected log-likelihood function. The update equations depend on the adopted model for
the class-conditional probability distributions for the pattern-vectors.

In the E, or expectation, step the a posteriori class membership probabilities are up-
dated. This is done by applying the Bayes formula to the class-conditional density. At
iteration n+1, the revised estimate is

P(t ∈ ω |Xt ,Y
(n)
ω ,Σ(n)

ω ) =
p(Xt |Y (n)

ω ,Σ(n)
ω )π(n)

t,ω

∑ω∈Ω p(Xt |Y (n)
ω ,Σ(n)

ω )π(n)
t,ω

(4)

where
π(n+1)

t,ω =
1
T

T

∑
t=1

P(t ∈ ω |Xt ,Y
(n)
ω ,Σ(n)

ω ) (5)

4.1 Mixtures of Gaussians
We now consider the case when the class conditional density for the training patterns
is Gaussian. Here we assume that the pattern vectors are distributed according to the
distribution

p(Xt |Y (n)
ω ,Σ(n)

ω ) =
1

(2π)L

√

|Σ(n)
ω |

exp

[

−1
2
(Xt −Y (n)

ω )T (Σ(n)
ω )−1(Xt −Y (n)

ω )

]

(6)

At iteration n+1 of the EM algorithm the revised estimate of the mean pattern vector for
class ω is

Y (n+1)
ω =

T

∑
t=1

P(t ∈ ω |Xt ,Y
(n)
ω ,Σ(n)

ω )Xt (7)

while the revised estimate of the covariance matrix is

Σ(n+1)
ω =

T

∑
t=1

P(t ∈ ω |Xt ,Y
(n)
ω ,Σ(n)

ω )(Xt −Y (n)
ω )(Xt −Y (n)

ω )T (8)

When the algorithm has converged, then the point-distribution models for the different
classes may be constructed off-line using the procedure outlined in Section 2.

We apply this learning procedure separately to the landmark data for the individual
limbs, and to the combined limb angle and limb-centre data. For the limb with label λ , the
estimated modal matrix is Φλ and the estimated parameter vector is γλ . For the shape-
class with label ω , on the other hand, the combined modal matrix for the articulation
angles and limb-centres is Φ̃ω and the result of fitting to data is a parameter vector Γω . The



first K rows of Γ̃ω correspond to the limb angles, and the remaining 2K to the long-vectors
of limbs centres. However, we need to constrain the parameters corresponding to the limb
angles. Suppose that the mean-vector for the limb-angles is Θ̂w and the corresponding
covariance matrix is Σw. The angular deformations are constrained to avoid flipping by
limiting the deformation vector. We use the variance associated with the eigen-modes to
constrain the deformation. The kth component of the parameter vector is constrained to
fall in the interval−3

√
αk ≤Γ(k) ≤ 3

√
αk The articulation angles lie in the range−180◦ to

180◦ to avoid discontinuities associated with the flip from 0◦ to 360◦. A similar procedure
for learning is followed to learn the variation in the polar representation of the limb and
limb classes.

5 Hierarchical Architecture
With the limb-articulation and limb-centre point distribution models to hand, our recog-
nition method proceeds in a hierarchical manner. Our aim is to classify the set of limb
landmark long-vectors X = (~z1, ...,~zk, ...,~zK) representing a test-shape. To commence, we
make maximum likelihood estimates of the best-fit parameters of each limb-model to each
set of limb-points. The best-fit parameters γ k

λ of the limb-model with class-label λ to the
set of points constituting the limb indexed k is

γk
λ = argmax

γ
p(~zk|Φλ ,γ) (9)

We use the best-fit parameters to assign a label to each limb. The label is that which has
maximum a posteriori probability given the limb parameters. The label assigned to the
limb indexed k is lk = argmax

l∈Ωs
P(l|~zk,γλ ,Φλ ) (10)

In practice, we assume that the fit error residuals follow a Gaussian distribution. As a
result, the class label is that associated with the minimum squared error. This process is
repeated for each limb in turn. The class identity of the set of limbs is summarised by the
string of assigned limb-labels L =< l1, l2, ..... >. Hence, the input layer is initialised using
maximum likelihood limb parameters and maximum a posteriori probability limb labels.
The shape-layer takes this information as input. The goal of computation in this second
layer is to refine the configuration of limb labels using global constraints on the arrange-
ment of limbs to form consistent shapes. The constraints come from both geometric and
symbolic sources. The geometric constraints are provided by the fit of a polar limbs point
distribution model. The symbolic constraints are provide by a dictionary of permissible
limb-label strings for different shapes.

The parameters of the limb-centre point distribution model are found using the EM al-
gorithm [7]. Here we borrow ideas from the hierarchical mixture of experts algorithm [8],
and pose the recovery of parameters as that of maximising a gated expected log-likelihood
function for the distribution of limb-centre alignment errors p(X |Φω ,Γω ). The likeli-
hood function is gated by two sets of probabilities. The first of these are the a posteriori
probabilities P(λ ω

k |~zk,γλ ω
k
,Φλ ω

k
) of the individual limbs. The second are the conditional

probabilities P(L|Λω ) of the assigned limb-label string given the dictionary of permissible
configurations for shapes of class ω . The expected log-likelihood function is given by

L = ∑
ω∈Ωc

P(L|Λω)

{

∏
k

P(λ ω
k |~zk,γλ ω

k
,Φ̃λ ω

k
)

}

ln p(X |Φ̃ω ,Γω) (11)

The optimal set of polar limb arrangement parameters satisfies the condition

Γ∗
ω = argmax

Γ
P(L|Λω)

{

∏
k

P(λ ω
k |~zk,γλ ω

k
,Φ̃λ ω

k
)

}

ln p(X |Φ̃ω ,Γω ) (12)



From the maximum likelihood alignment parameters we identify the shape-class of
maximum a posteriori probability. The class is the one for which

ω∗ = arg max
ω∈Ωc

P(ω |X ,Φ̃ω ,Γ∗
ω ) (13)

The class identity of the maximum a posteriori probability shape is passed back to the
limb-layer of the architecture. The limb labels can then be refined in the light of the
consistent assignments for the limb-label configuration associated with the shape-class ω

lk = arg max
λ∈Ωs

P(λ |~zk,γk
l ,Φ̃λ )P(L(λ ,k)|Λω ) (14)

Finally, the maximum likelihood parameters for the limbs are refined
γk = argmax

γ
p(~zk|Φ̃lk ,γ ,Γ∗

ω ) (15)

These labels are passed to the shape-layer and the process is iterated to convergence.

6 Models
To apply the model to shape-recognition, we require models of the alignment error process
and the label error process.

6.1 Alignment errors
To develop a useful alignment algorithm we require a model for the measurement pro-
cess. Here we assume that the observed position vectors, i.e. ~zk are derived from the
model points through a Gaussian error process. According to our Gaussian model of the
alignment errors,

p(~zk|Φ̃λ ,γλ ) =
1

2πσ
exp

[

− 1
2σ 2 (~zk − X̂λ − Φ̃λ γλ )T (~zk − X̂λ − Φ̃λ γλ )

]

(16)

where σ 2 is the variance of the point-position errors which for simplicity are assumed to
be isotropic. A similar procedure may be applied to estimate the parameters of the polar
limb-angle distribution model.

6.2 Label Assignment
The distribution of label errors is modelled using the method developed by Hancock and
Kittler [9]. To measure the degree of error we measure the Hamming distance between
the assigned string of labels L and the dictionary item Λ. The Hamming distance is given
by H(L,Λω ) =

K

∑
i=1

δli,λ ω
i

(17)

where δ is the Dirac delta function. With the Hamming distance to hand, the probability
of the assigned string of labels L given the dictionary item Λ is

P(L|Λω ) = Kp exp[−kpH(L,Λω )] (18)

where Kp = (1− p)K and kp = ln 1−p
p are constants determined by the label-error proba-

bility p.

7 Experiment
We have evaluated our method on sets of images of people in different poses. Figure 1
shows an exampled of the images used in our experiments, and illustrates the steps used
to abstract the human subject for the purposes of recognition. In figure 1a, we show the
original subject, who is wearing white markers to distinguish the main control points, or
limb-centres, of our model. Figure 1b shows the subject ”skeleton”, and figure 1c the
set of strokes constituting the shape. In figure 2 we show sets of example “skeletons”
from a number of distinct body poses which we have used for the purposes of training.
In total we have collected images of 14 distinct poses, and there are 20 examples of each
pose. Each example is composed of 13 limb segments, and each limb-segment centre is
identified by a marker. In Figure 3 we show four examples of the mean-shapes recovered
as the output of the learning stage.



(a) (b) (c)
Figure 1: Shape Representation. (a) shooting; (b) extracted shape limbs; (c) shape limbs
center

To evaluate recognition performance, we have used 1200 images corresponding to differ-
ent pose classes for testing. Figure 4 show the learned shape models iteratively aligning
to the “Stretching” pose sample. The figure illustrates how the model adapts in a flexible
manner to fit the example shape in a relatively small number of iterations. In the figure
the test-shape is shown in black lines while the model is shown in red.

Figure 2: Training Sets

(a) (b) (c) (d)
Figure 3: Learnt Shapes:(a) Boxing, (b) Kicking, (c) Relaxing, (d) Stretching

To illustrate the effectiveness of the recognition method when the input is confused,
we have experimented with a test shape that overlaps two model shapes. In this example
the test shape can fall into either the “Kicking” or “Shooting” classes. Figure 5 shows the
alignment process. Initially, both the “Kicking” and “Shooting” hypotheses have low a
posteriori probability. However, after several iterations the “Kicking” model dominates
the alternative hypothesis.

To explore the capacity of the method to identify clusters of poses, we have applied
principal components analysis and multidimensional scaling to the vectors of fitted model
parameters extracted using our recognition method. Figures 6 and 7 respectively show the
result of applying MDS and PCA to the alignment parameters for 54 sample shapes drawn
at random from the set of shape-classes. In the top row of the two figures, we show the



(a) (b) (c) (d)
Figure 4: Stretching Alignment:(a)iteration 1,(b)iteration 2,(c)iteration 3,(d)iteration 5

(a) (b) (c) (d)

(e) (f)
Figure 5: Alignment: Kicking: (a) iteration 1, (b) iteration 2, (c) iteration 3, (d) iteration
4; Shooting: (e) iteration 1, (f) iteration 2

result of projecting the data onto the leading three eigenvectors. In the bottom row of
the two plots, we show the matrix of pairwise distances computed from the projection
of the data into the three dimensional eigenspace. In the left-hand column of each plot,
we show the results obtained with the initial parameter vectors, while the second column
shows the results with the parameter vectors at convergence. The main effect of iterating
the recognition method is to improve the clusters of shapes. This is reflected both by the
distribution of data in the eigenspace, and the block structure in the pairwise distance ma-
trices. Moreover, a better cluster structure emerges when MDS is used rather than PCA.
However, a deeper analysis of the data reveals that PCA gives a better cluster structure
when the shapes are subject to scaling.

To take this investigation one step further, Figure 8 shows the effect of adding random
noise to the patterns. Here we apply MDS to the Euclidean distances between the final
reconstructed shapes using the model parameters obtained at the final iteration of the



fitting algorithm. The left-hand panel shows the MDS embedding of 6 shapes with 15
examples each. Here the different shape classes are shown in different colours. The right-
panel shows the pairwise distance matrix. It is clear that the method produces good shape
clusters even under conditions of noise.
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Figure 6: MDS Classification: top row shows the embedding and the second row represent
distance matrix;(a) iteration 1, (b) final iteration
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Figure 7: PCA Classification: top row shows the embedding and the second row shows
the distance matrix; (a) iteration 1, (b) final iteration



Table 1 shows the recognition rates for six shape classes. The overall correct recog-
nition rate is 93.16%. The poorest recognition occurs for the kicking, the picking and the
shooting classes. Since these classes share similar limb configuration, we can conclude
that recognition is reasonably high.
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Figure 8: MDS data-model distances.(a) 6 clusters of 90 shapes, (b) dissimilarity matrix
Table 1. Recognition rate for shape classes
Shape Boxing Kicking Relaxing Picking Stretching Shooting Rec. R.

Sample 200 200 200 200 200 200
Correct 198 163 197 181 200 179 93.16%
Wrong 2 37 3 19 0 21 6.84%

8 Conclusion
In this paper, we have described a method for fitting articulated shape-models to landmark
point data. The shape deformation process adopted is based on point distribution models.
The model representation is a hierarchical one. There is a Cartesian deformation model
for the limbs and the limb-centres, together with a polar model which represents limb
articulation. We develop a probabilistic framework for fitting a mixture of articulated
models to data. The method delivers good results of human shape modelling.
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