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Abstract

In this paper, we are going to answer the following question: assuming that
we have estimates for the epipolar geometry and its uncertainty between two
views, how probable it is that a new, independent point pair will satisfy the
true epipolar geometry and be, in this sense, a feasible candidate correspon-
dence pair? If we knew the true fundamental matrix, the answer would be
trivial but in reality it is not because of estimation errors. So, as a point in the
first view is given, we will show that we may compute a probability density
for the feasible correspondence locations in the second view that describes
the current level of knowledge of the epipolar geometry between the views.
We will thus have a point–probability-density relation which can be under-
stood as a probabilistic form of the epipolar constraint; it also approaches the
true point–line relation as the number of training correspondences tends to in-
finity. We will also show that the eigenvectors of the epipolar line covariance
matrix have certain interpretations on the image plane, of which one is the
previously observed, narrowest point of the epipolar envelope. The results
of this paper are novel and important since the uncertainty of the epipolar
constraint can be now taken into account in a sound way in applications.

1 Introduction
Epipolar geometry helps in matching points between two views since the correspondence
for a point in the first view must lie on the corresponding epipolar line in the second
view. However, when the epipolar geometry is estimated from noisy data, the true, noise
free matches will not lie on the estimated epipolar lines precisely, since the fundamental
matrix will be known only up to a finite level of accuracy. Typically, the deviation from
the estimated epipolar lines is especially large when a true correspondence pair is clearly
out of the disparity range of the training correspondences. One key question posed in
this paper is thus what can we say about the probability of a point pair to satisfy the true
epipolar geometry given estimates of the epipolar geometry and its uncertainty that are
computed from some independent sample correspondences between the views.

The starting point for this work was the results in [12, 13, 5], where it was noticed that
the error bounds of the epipolar lines seem to be narrowest at the most probable location
of the match. They suggested that the covariance matrix [4, 7] of the fundamental matrix
might therefore capture disparity information of the training scene, although the epipolar
geometry itself reveals nothing about the disparity. However, an accurate explanation
for the narrowest point of the envelope has not been given so far [6]. Consequently in
Section 2, we will first show formally that these conjectures are right and show how this
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most probable location can be computed. The most probable point should be seen as
the point which will most probably, given the so far gatherer evidence of the epipolar
geometry, be on the true epipolar line—not as a prediction of disparity when we extend
the discussion to a new scene with different depth distribution from the training scene.

In total, this paper considers the use of covariance matrix of the fundamental matrix by
studying the epipolar line variation in the dual space but similar analysis can be performed
for uncertain lines in general. In Section 3, we transform the epipolar line variation,
which is a dual, line distribution, to a point distribution onto the image plane. This is
an exact probabilistic version of the epipolar constraint: it is represented by the point–
probability-density relation and, as our information of the epipolar geometry grows, in
general, the point probability-density will converge to the true epipolar line as an improper
point density. The derived probability density will just tell that the true epipolar line
points, corresponding to a point in the first view, can be anywhere in the second image as
our knowledge of the epipolar geometry is uncertain, but, points on certain finite regions
in the second image satisfy the true epipolar geometry more probably than on some others.

Where previous applications frequently assume that the estimated epipolar geometry
is correct and neglect the fact that even the maximum likelihood estimates for the epipo-
lar lines deviate from the true epipolar lines, this paper places in between unknown and
certain epipolar geometry. The motivation is in reality where estimated epipolar geome-
try is never completely error free, hence a single epipolar line estimate does not tell the
whole truth of the revealed epipolar geometry. In matching, for instance, extrapolation
of the epipolar constraint outside the disparity range of the training correspondences is
evidently risky, but previously there has been no clear means to measure this risk. If we
replace the epipolar line estimates by the derived point probability-densities, we may use
uncertain epipolar geometry in a sound way in applications by using the probability theory
as the logic. Moreover, will not say more of the constraint than there has been evidence of
it in the training data. Nevertheless, we do not claim that the derived probability density
would be the only available cue, say, in matching. Other priors, e.g. for disparity, can and
should be additionally used while all the cues can be exploited by the probability theory.

Recently, Triggs proposed a method that models the joint probability distributions of
correspondences [10] that are aimed at summarising the behaviour of the training corre-
spondences but not to rigidly constrain them to an ideal predefined geometry. In both,
his and our approaches, a loose analogy can be seen to Bayesian inference in the form
of model averaging [9] and marginalisation. The difference between our and Triggs’ ap-
proach [10] is significant since he just summarises the feature distributions by Gaussians
on the image planes, and considers an algebraic linear system for their estimation. We,
however, derive our distributions in the dual space from the epipolar line covariance and
the related Gaussian model which is justified by the general estimation theory since max-
imum likelihood parameter estimates are asymptotically normally distributed. With our
approach, we may additionally use any statistically sound criterion for the fundamental
matrix and its covariance, and are able to estimate them robustly [3, 1, 2].

2 Special Points and Lines
In this section, we will show that certain points and lines in the image have a special role
as soon as the epipolar line variation approaches to a normal distribution in the dual space.
To create a convenient parameterisation for lines, we follow [6] by defining the point–line



relation of the epipolar geometry by the mapping l :� 2���
3 such that l�x�� �Fx��1Fx.

The first-order covariance approximation for the epipolar line l in the second image, given
the point x in the first, is

Cl �
∂ l
∂F

CF
∂ l
∂F

T

�
∂ l
∂x

Cx
∂ l
∂x

T

� (1)

where ∂ l�∂F is the Jacobian of the point-line mapping above with respect to the elements
of F, and x is assumed to be contaminated by Gaussian noise with covariance matrix C x.

Proposition 1 Let x be a point in the first view, corrupted by Gaussian noise with covari-
ance matrixCx; let F̂ be the estimated fundamental matrix with estimated covariance ma-
trix ĈF, where the estimation is performed independently of x. Then, up to the first-order,
Gaussian approximation, the eigenvectors, sorted in descending order of the eigenvalues,
of the epipolar line covariance matrix Ĉl, corresponding to x and having the rank of 2
with no multiple eigenvalues, have the following interpretations in the second image:

u1: the least probable pencil of epipolar lines containing l 0;

the least probable epipolar line intersecting the point u2

u2: the most probable pencil of epipolar lines;

the least probable epipolar line intersecting the point u1

u3: the least probable pencil of epipolar lines;

the mean epipolar line estimate l0 corresponding to x�

Proof. Since the first-order approximation for C l is equivalent to its tangential approx-
imation at the estimated (mean) epipolar line l0 � �Fx��1Fx, the covariance matrix ap-
proximation is degenerate and positive semi-definite. Since it is also real and symmetrical,
we may perform the similarity transform and define

C�
l � UTClU �

�
�σ2

1 0 0
0 σ 2

2 0
0 0 0

�
� � (2)

where U contains the eigenvectors of Cl normalised to the unit norm and ordered such
that σ1 � σ2. We notice that the mean epipolar line l0 belongs to the left null space of
the Jacobians ∂ l�∂F and ∂ l�∂x; so it must also belong to the null space of C l, hence,
u3 � l0. Let the tangent plane of the unit sphere at u3 be π and the tangent plane at
e3 � �0 0 1�T be π �. If we regard �3 as a projective space �2, UT can be also seen as the
collineation UT : �2 �� �

2 from the projective plane π to π �, i.e., the lines (and points)
transform according to l � � UTl. The mean epipolar line is the origin in the transformed
dual space π � since e3 �UTu3. Correspondingly, the direction of the largest variance u 1 is
transformed to e1 � �1 0 0�T and the direction of the smaller variance u2 to e2 � �0 1 0�T.

It is assumed that the covariance is non-isotropic in the sense that σ1 � σ2. Therefore,
in the transformed dual space the most probable line is the x-axis �0 1 0� T � e2, since the
marginal probability or integral of the two-dimensional (degenerate three-dimensional)
Gaussian distribution with the covariance matrix C �

l centred at e3 is the largest over this
line (see Fig. 1). The most probable point in the image hence is u 2 � Ue2 in the sense
that the total probability of the pencil of epipolar lines intersecting u 2 is the largest. Since
the (dual) line e2 intersects the origin, it contains the (dual) point of the mean epipolar
line, and the point u2 is therefore also on the estimated epipolar line. The least probable



−4 −3 −2 −1 0 1 2 3 4

x 10
−4

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x 10
−4

e 3 
e 

e 1 

2 

Origin
(Estimated epipolar line)The most probable line

in the transformed 
dual space

The least probable line 
in the transformed dual space
that contains the origin 

Figure 1: Illustration of the transformed dual space or the projective plane π� with the contours
of the Gaussian corresponding to C�

l. The estimated epipolar line l0 corresponds to the origin e3,
and the most probable point in the image space is u2 � Ue2 since the marginal probability over the
line e2 is the largest. Correspondingly, the least probable point on the estimated epipolar line is
u1 � Ue1 since e1 has the smallest total probability of the lines that contain the origin.

point on the estimated epipolar line is correspondingly the y-axis or the line e 1 in the
transformed dual space since the marginal probability is the smallest of all (dual) lines
that intersect the origin e3. Hence, the least probable pencil of epipolar lines that contain
the line u3 must be u1 � Ue1. The least probable line in the transformed dual space is the
line at infinity e3, its marginal probability being zero; hence the point interpretation of
u3 is the least probable pencil of epipolar lines in the second image. In the transformed
dual space, e1 is the least probable point on the x-axis because, as an ideal point it has
zero probability density value. Its line interpretation u 1 in the second image is hence the
least probable line that intersects the most probable point u2. Correspondingly, e2 is the
least probable point on the y-axis in the dual space, and therefore u 2 is the least probable
epipolar line for x that intersects the point u1. �

A crucial assumption is that the non-zero eigenvalues of the epipolar line covariance
matrix are not equal. If they were, no line intersecting the origin in the transformed dual
space would be in a more probable position. In other words, every pencil of lines centred
at any point on the mean epipolar line would share equal total probability. Neverthe-
less, the F-matrix is normally estimated from point matches with concentrated disparity
distribution, which suggests that σ1 � σ2, which can be easily verified experimentally.

In Fig. 2, we have an example of how the point and line interpretations of the eigen-
vectors of the epipolar line covariance are related. Since the distance between the origin
and the estimated epipolar line is large, the point interpretation of u 3 is very close to the
origin. This example shows that, while the origin may be fixed to an arbitrary point in the
image, its location exerts a special influence, and affects the eigenvectors of C l and hence
the location of the special points and lines in the image, except l 0, and even the epipolar
envelopes, which is not desirable. Another way to see this is the known fact that error
covariances are not invariant to coordinate transforms, thus covariances may look com-
pletely different in different frames [11]—this may also be seen as an opportunity since
we may choose the coordinate system such that our density approximation, which can be
also seen as the Laplace’s method [8], is most accurate. In fact, a careful analytical and
experimental analysis shows [2] that a most reasonable way of selecting the coordinate
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Figure 2: Point and line interpretations of the eigenvectors of the epipolar line covariance matrix
Cl that is computed for the corner point in the cornice of the roof. As expected, the most probable
point u2 is close to the true correspondence point. Since the estimated epipolar line l0 � u3 is far
away from the origin, the point interpretation of u3 is correspondingly very close to the origin. This
makes the origin a special point of the image. INRIA Syntim owns the copyright of the stereo pair.

system is to simply translate the image origin far away from the mean epipolar line.
Let us now return to the previously made hypothesis that the match location is with

higher probability at the narrowest point of the epipolar envelope since we are now able
to explain this observation. The confidence intervals of the epipolar lines in the first-order
approximation are represented by the conic [6]

C � l0lT0 � k2Cl� (3)

where k2 follows the cumulative χ 2
n distribution with two degrees of freedom. We observe

that the line interpretation of u2 is polar of the point u2 with respect to the conic C (see
Fig. 3) because C has identical eigenvectors to Cl; hence, u2�̂Cu2 (equality up to scale).
Let us additionally assume that the epipolar envelope is a hyperbola of two sheets, as is
normally the case. Since the least probable epipolar line is normally far away from the
most probable point, the tangency lines from the most probable point are close to asymp-
totes of the hyperbola. The centre of the hyperbola is the intersection of its asymptotes,
i.e., the line at infinity is polar to the centre. The centre of the hyperbola is therefore close
to the most probable point, but they do not coincide unless the line u 2 is the line at infinity.

3 Derivation of the Probabilistic Epipolar Constraint
In this section, we will further develop the considerations presented in Section 2 and
derive the probabilistic epipolar constraint. The fundamental observation is that the prob-
ability of any point x� in the second image, to correspond to the point x in the first view,
is equivalent to the total probability of those epipolar geometries that would explain the
correspondence x� x� in the two views. In other words, we compute the total probability
of the pencil of (epipolar) lines centred at x �, or the total probability of the line x � in the
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Figure 3: By the pole–polar relationship, any point x outside the conic C induces a polar line l�Cx
that intersects the conic at two points, and the tangents at these points intersect at x. Since here u2 is
an eigenvector of the epipolar envelope C and is outside the conic, its line interpretation is polar to
its point interpretation. Moreover, if C is a hyperbola and the point u3 is far away from the epipolar
line the tangent lines of C at the intersection points of the line u2 and C are close to the asymptotes
of C. The centre of the hyperbola, the intersection of those tangent lines whose points of tangency
are on l∞, is then close to the point u2.

dual space that is, in principal, the marginal probability of the Gaussian model over the
line x� in the dual space. The corresponding transform of the dual probability density is,
in fact, similar to the well-known Radon transform, but lines must be weighted on the
basis of their direction here.

Proposition 2 Let x be a point in the first view and assume that the epipolar geometry
and its covariance matrix has been estimated independently of x. Let the epipolar line
covariance matrix corresponding to x be Cl, defined as in (1) and (2). Then, up to a
Gaussian approximation, Cl determines a 2D probability density for the epipolar line
points x� in the second view and the density is represented by

p�r�θ �Cl� �
σ1σ2 e�

1
2 r

�2�σ2
1 cos2 θ�σ2

2 sin2 θ��1

	
2π3r2�σ2

1 cos2 θ �σ2
2 sin2 θ �3�2

� (4)

where the point x� is parameterised with the signed-distance–direction pair �r�θ � on the
transformed image plane π �.

Proof. In this proof, we use several times the property that when we have an almost
everywhere continuous and invertible mapping s: S �� R in any set S 
 �

n , we may
evaluate the integral of the kernel p�s� by substitution s � s�r� in the domain R and it
holds

�
S p�s�ds �

�
R p�s�r�� �detJ s�r��dr� where J is the Jacobian operator.

Let us transform the original coordinate system by the orthogonal transform U T,
where U contains the unit eigenvectors of Cl in the descending order of the eigenval-
ues; hence x�� �UTx�, e3 �UTl0, and C�

l �UTClU as in (2). Let us now consider the dual
space of this transformed space. Let us write those lines of the transformed dual space
that are parallel to x�� in parametric form

ls�t�� �
�
td� sn

1

�
� s� t � ��

where d is the unit direction vector of the line x �� and n is its unit normal such that the
polar angle of d is on �� π

2 �
π
2 � and det�d n� � 1.

By assumption, the epipolar lines, corresponding to the point x in the first view, are
normally distributed in the transformed dual space with the mean at e 3 and covariance



matrix C�
l, and the corresponding density function is p�l s�t���e3�C

�
l�. The marginal prob-

ability of p�ls�t���e3�C
�
l� over the lines parallel to x�� depends only on the direction angle

�θ c � ��π
2 �

π
2 � of the line x�� where θ c � π

2 sign θ � θ is the complement angle of the
direction θ of the point x��, as we define sign 0 � 1. The marginal probability is

p�s�θ �C�
l��

� ∞

�∞
p�ls�t���e3�C

�
l�dt �

�
L
p�l�l0�Cl�dL�

Let us evaluate the kernel p�ls�t���e3�C
�
l� or the 2D Gaussian p�l̃s�t���02� C̃

�
l�, where l̃s�t���

�td� sn�, 02 � �0 0�T, and C̃�
l � diag�σ 2

1 �σ
2
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where R � �d n� and R�T � �d� n��T is the rotation that brings the image of the line x ��

horizontal in the uv-plane, and the rotation angle is on the interval �� π
2 �

π
2 �. Now,
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where �̂ denotes the equivalence between the two kernels. Hence,� ∞
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and d� lies in the same quadrant as d, we return to the original coordinate frame by the sub-
stitution v � n�TC̃�

l
� 1

2 l̃�s�t� � s��nTC̃�
l

1
2 �� By denoting that n � ��sin�θ c cos�θ c�T �

signθ �cosθ sinθ �T and �nTC̃�
l

1
2 �2 � σ2

1 cos2 θ �σ2
2 sin2 θ , we get
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that is a 1D Gaussian.
The lines parallel to x�� intersect at �d 0�T in the transformed dual space that is equiv-

alently the line that joins the origin e3 and x�� in the transformed image space. In addition,
we have parameterised the parallel lines in the transformed dual space by s which repre-
sents the signed distance between the line x ��

s and e3 in the transformed dual space. As
we define r as the signed distance from e3 in the transformed space, it also parameterises
the points of line �d 0�T uniquely. Since the lines x��

s and points on the line �d 0�T have
one-to-one correspondence, we have s� s�r�. In fact,

s�r� �
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Therefore the conditional probability density

p�r�θ �Cl� �
1
r2 p

�
s�r��θ �C�

l
�
�

e�
1
2 r

�2�σ2
1 cos2 θ�σ2

2 sin2 θ��1

r2
	

2π�σ 2
1 cos2 θ �σ2

2 sin2 θ �
�

Let us then consider the probability density p�θ �Cl� of the direction angleΘ����Θc�c �
�arccotL2�L1 ��arctanL1�L2, where L � �L1 L2 L3�

T  N�e3�C
�
l�. By substitution
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where r� � �, θ � � ��π
2 �

π
2 �. Here, the determinant of the Jacobian is σ1σ2r

�, hence,
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The marginal probability over r � is

p�θ ��C�
l� �

� ∞

�∞
p�r��θ ��C�

l�dr
� �

1
π

� ∞

0
r�e�

1
2 r

�2
dr� �

1
π
�

We may now transform θ � back by the substitution θ � � �arctan�
σ1
σ2

cotθ �, when the

density function for θ is obtained as

p�θ �Cl� � p�θ ��C�
l�

����dθ �

dθ

����� σ1σ2

π�σ 2
1 cos2 θ �σ2

2 sin2 θ �
�

The joint probability density p�r�θ �Cl� is now obtained by combining the results above,

p�r�θ �Cl� � p�r�θ �Cl�p�θ �Cl��

and the claim follows. �

Corollary 3 The probability density in (4), represented in coordinate basis of the second
image, is

p�x��y��Cl� � �detJ r�x��y��� p�r�x��y����Cl

�
� (5)

where
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The derived probability density is nothing more than a transform of the dual, epipolar
line density onto the image plane so it represents our degree of knowledge of the epipolar
constraint: we do know that there is a true epipolar line but we do not know exactly where
it is! The density however describes the probability, or certainty, that any point in the
second view lies on the true epipolar line. Moreover, since the training data give evidence
of the geometry only on certain disparities, the constraint will also be the most accurately
known on similar disparities. Therefore the contours of the derived probability density are
well-localised, bow-tie shaped and follow the shapes of the epipolar envelopes, as Fig. 4
illustrates. The narrowest location is around the point u2, and it is improbable that a match
would reside near that point but deviated in the normal direction of the mean epipolar line.
In addition, the contours quantify the risk of extrapolation beyond the training disparities
on the mean epipolar line.

The probability density should be seen as the probabilistic equivalent for the estimated
epipolar line. The density was derived under the Gaussian approximation for the epipolar
line variation in the dual space which is, in fact, its exact asymptotic behaviour under
certain general conditions. Moreover, when the amount of training data goes to infinity
the epipolar geometry will generally become certain, and the probability density will
converge to the true epipolar line. The density is neither ill-posed for nearly planar scenes
but simply reports the evidence of the geometry that has been observed so far; likewise
in Fig. 4(b), the density is also peaked around u2 strongly since the depth variation is
relatively small in the scene, compare to Fig. 5. In addition, since the probability density
depends only on the uncertainty of the epipolar geometry, it can be directly used in a new
scene (with the same camera configuration) to find new matches that can further refine
the epipolar geometry by just showing new evidence of it!



(a) (b) (c)
Figure 4: Comparison of epipolar envelopes and the epipolar line probability density, both derived
from the covariance matrix of the fundamental matrix, as the point in the left corner of the mouth is
given in the first image (not shown here). (a) Epipolar envelopes corresponding to �1� k��100%
confidence intervals in [4], where k � 0�1�0�3�0�5�0�7�0�9. (b) Equi-probability contours of the
probability density (5) in the second image, at the levels of 10�5

�10�4
�10�3

�10�2
� and 10�1 times

the maximum value at u2. (c) One thousand independent samples from the probability density (5).
The estimated epipolar line is shown by the dashed lines; the robust estimation of the affine epipo-
lar geometry and its uncertainty has been performed automatically from point correspondences as
proposed in [3, 2]. INRIA Syntim owns the copyright of the stereo pair.

4 Conclusions
In this paper, we have investigated the properties of the covariance matrix of the funda-
mental matrix. We first showed that the eigenvectors of the epipolar line covariance matrix
have coupled point and line interpretations in the other image. In fact, given a point in
one image, the most probable location in the other image is represented by the second
eigenvector in the sense that it represents the pencil of epipolar lines with the largest total
probability. Consequently, the previous observation of the narrowest point of the epipolar
envelope was explained. The principal result of this paper is, however, the derivation of
the probabilistic form of the epipolar constraint and we believe it will become an impor-
tant tool for future applications since it is simply a rigorous representation of the degree
of knowledge of the epipolar constraint on the image plane. The fundamental message
is that we can not say more about the epipolar constraint than there is evidence of it in
the training correspondences. In guided or dense matching applications, the derived prob-
ability density can be applied, for instance, to find new correspondences reliably whilst
larger amount of training data may refine the epipolar geometry estimates and decrease
the uncertainty. The scene reconstruction problem can be thus posed as a learning and
inference problem, which starts from rough geometry estimates, and uses the scene itself
to refine the geometry estimates and establish new correspondences in a systematic, iter-
ative fashion. The derived density is additionally a most convenient prior in computing,
for instance, a dense disparity map of a scene by Bayes methods.
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