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Abstract

One of the most common problems in image analysis is the estimation
and removal of noise or other artefacts using spatial filters. Common tech-
niques include Gaussian, Median and Anisotropic Filtering. Though these
techniques are quite common they must be used with great care on medi-
cal data, as it is very easy to introduce artifact into images due to spatial
smoothing. The use of such techniques is further restricted by the absence
of a ‘gold standard’ data against which to test the behaviour of the filters.
Following a general discussion of the equivalence of filtering techniques to
likelihood based estimation using an assumed model, this paper describes an
approach to noise filtering in multi-dimensional data using a partial volume
data density model. The resulting data sets can then be taken as a gold stan-
dard for spatial filtering techniques which use the information from single
images. We demonstrate equivalence between the results from this analysis
and techniques for performance characterisation which do not require a ‘gold
standard’.

1 Introduction
A common problem across the field of computer vision is the need to define effective
methods for the characterisation of algorithms [4, 6]. By characterisation we mean that
we need a quantitative way of assessing the performance of an algorithm which makes
it possible to decide if the data generated is suitable for subsequent tasks. Despite over
30 years of research in this field this issue is still largely unsolved in many classes of
problems. Recent advances include the use of ROC curves for feature detection evaluation
[1]. It is tempting to think that most problems should be solved by identifying a ”gold
standard” against which to measure performance. However, in many real tasks it cannot be
obtained and alternative approaches have to be used to measure and characterise algorithm
performance [8, 11]. The work in this paper illustrates an approach to construct a ”gold
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standard” for Magnetic Resonance (MR) images and at the same time compare the results
to alternative methods. We hope to illustrate, using the noise filtering as an example, that
in some cases characterisations which would initially appear to require a ”gold standard”
can, with some ingenuity, be done without one.

Noise filtering of any data involves the assumption of a specific image generation
mechanism (or image model). The process of Gaussian smoothing can be interpreted as
consistent with a likelihood estimation of the central value within a region. This is done on
the assumption that the data within this region can be described by some functional model
with the expected grey level residuals being drawn from a Gaussian noise distribution with
variance inversely proportional to the spatial Gaussian weighting term. The specific form
of the assumed model is best understood by considering a more simplistic problem first.
Gaussian filtering removes high spatial frequency content from the structure of images. A
less destructive approach to noise filtering is based on the concept of anisotropic filtering,
where the data is preferentially smoothed along a direction selected in order to minimise
the loss of spatial structure in the image. One particular variant of this we call Tangential
Filtering. Here, the tangential direction to the local image slope is computed and the data
is smoothed by taking the weighted average of points along this line situated on either
side of the central value. Averaging of multiple values in this way assumes that the data
can locally be fitted to a 1D line and selection of the tangential direction results in the
least destructive impact on edge structure. In fact any anti-symmetric function will result
in an appropriate central estimate, and this can be taken as the most general assumption
for the underlying image model at each point. We can also see that for an average of
two points the noise in the resulting image should be reduced by typically a factor of√

2 of the original image noise 1. Returning to Gaussian filtering, we can interpret this
process as an averaging of multiple estimates of the central value for any pair of pixels
with equal weight in the Gaussian kernel. The class of functions for which this would
be an appropriate model would include Cartesian polynomials (expanded as a function of
shifts (x,y)) from the central location (x0,y0), either with no even terms, or at least exact
cancellation of the magnitudes of even power coefficients. For example:

I(x− x0,y− y0) = a + bx + cy + dxy + ex2 − ey2 + ... (1)

Though the only global function for which the model would work correctly at every image
location would be an inclined plane. When described in this way it is easy to see the over-
simplicity of this model in comparison to the structures found in real medical images.
It is this which results in the characteristic problems with Gaussian filtering of image
smoothing and the loss of sharp edge structures.

As a direct contrast to spatial image filtering, which assumes specific forms of spatial
correlation between grey level values, multi-dimensional tissue segmentation algorithms
rely instead upon corellations between multiple measurements of the same physical loca-
tion (voxel) using different imaging modalities. The typical approach involves building
a model not of spatial structure but of grey level density distribution. A common form
of noise removal which makes use of grey-level density distribution is the median filter,
which can be considered as a bootstrapped likelihood estimator. While many authors have
concentrated on the use of grey level density estimation for tissue labelling, estimates of
tissue volume proportion [9] can be used to predict the original image content for each
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3 if we also include the central value in the estimate



modality in the case of zero noise. The process is simply one of using the estimated model
parameters to generate the expected grey level values, using the linear equations implicit
in the segmentation. Thus multi-spectral segmentation techniques can be used as the basis
for noise filtering.

Many readers may find the interpretation of filtering methods from a perspective of
a model based estimation process unusual. However, one advantage of this approach is
that explicit identification of the assumed model makes it possible to consider testing the
conformity of the data under analysis to the model. This is something which has not
generally been tested for spatial filtering approaches. We explain below how this can be
used to prevent noise removal in un-modelled parts of the data, i.e. pathology. In addition,
we will demonstrate how the results from multi-spectral noise filtering are usable as a gold
standard for spatial filtering techniques.

2 Methods
We will assess the stability of the selected filtering schemes first using a Monte-Carlo
approach. Here a small quantity of noise is added to the input image and the relative
change in output grey-level values is measured. However, this technique is not sufficient
as an evaluation, as it will not measure failure of the implicit filtering model. By interpret-
ing each noise filtering technique as an estimation process we suggest that it is possible
to assess the validity of the filtering method by observing the number of grey-level val-
ues which are changed by more than 3 standard deviations (S.D.) of the estimated image
noise, i.e. a residual outlier measurement (ROM). To estimate the image noise to set the
scale of this measurement, we use a technique we call Local Noise Estimation (LNE).
This is based upon the observation that high order derivatives are heavily corrupted by
image noise. On the assumption of uniform independent noise we can use error propaga-
tion to predict the expected level of noise on any order of spatial derivative. By measuring
the width of the distribution of derivatives around the peak at zero we can get an estimate
of the original image noise by scaling with the appropriate error propagation factor. We
use second derivatives which means that the technique is also consistent with measuring
the deviation from a purely linear spatial grey-level model. 2

The Monte-Carlo assessment and the ROM measure are complementary aspects of
performance, the first giving an indication of the best case noise filter on the assumption
that the filter model is adequate and the second giving an indication of how often this
model is inappropriate. Importantly, neither technique requires a “gold standard” to test
against. Ideally, we wish to show that these techniques give a complete characterisation
of the algorithm performance and for this we will need a surrogate “gold standard”. We
choose to use for this the Multi-Spectral filtering method which will now be described.

Multi-dimensional Gaussian distributions are used to model the effects of both inher-
ent tissue variability and measurement noise for pure tissues. A multi-variate Gaussian
distribution for multi-dimensional data g for each pure tissue t is defined as:

dt(g) = αt e−
1
2 (g−mt)T Ct (g−mt) (2)

2Although this method will estimate the image noise well (within a few percent) for data with spatially
uncorrelated noise, we cannot use this technique to estimate noise following spatial filtering.



where:
mt is a mean tissue vector
Ct is inverse of a covariance matrix
αt is a constant which gives unit normalisation

Using an assumption of a linear image formation process, whereby the total intensity
level at each voxel results from summation of different tissue fractions present at that
particular voxel, the partial volume distribution can be thought of as being composed of
two triangular distributions convolved with a Gaussian (Tts(g) + Tst(g)). Where Tts(g) is
the local density estimate for tissue t generated by a partial voluming process with tissue
s. Assuming that tissue variability is more significant than the measurement processes,
multi-dimensional partial volume distributions can be modelled along the line between
two pure tissue means mt and ms:

dts(g) = βtsTts(h)e−(g−h.g/|h|)T Ch(g−h.g/|h|) (3)

where the parameters for the given data g are:
h is a fractional distance between two centres of distribution [0< h< 1]
h = (g−ms)Ch(mt−ms)/|(Mt−ms)Ch(mt−ms)|
Ch is a covariance matrix: Ch = Ct h + Cs(1−h)
Tts(h) is the 1D partial volume distribution between pure tissues t and s.
βts is a constant which gives unit normalisation

The 1D partial volume distribution, Tts, obtained by convolving a triangular distri-
bution normalised to 1

2 with Gaussian distribution normalised to 1, takes the following
form [13]:

Tts(x) =−kx + c
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where:
x is a grey level value calculated as a normal projection of vector g onto line between

two distribution means
k and c are the slope and intercept of the line which forms the triangle
a and b are the start and end points of an interval at which the triangular distribution

has a non-zero value
σ is a standard deviation of a Gaussian function

The overall partial volume distribution is calculated as a product of a Gaussian func-
tion of the normal distance (g− h.g/|h|) from two distribution centres and the 1D par-
tial volume distribution Tts(h). Examples of the types of distributions obtained from the
model parameters of two images for three pure tissues and their partial volumes are shown
in Figure 1. It can be seen that pure tissue distribution models take the form of elliptical
features, while the partial volumes are shown as elongated structures between centres of
distributions.

Parameters of the model can be iteratively estimated using the Expectation Maximi-
sation (EM) approach [5, 10]. EM is used to estimate the parameters by maximising the



(a) (b)

Figure 1: An example of distributions generated from the model for two images (a) Pure
tissue distributions (b) Combined distributions of pure tissues and partial volumes be-
tween centres of pure tissues

likelihood of the data distribution. This involves first getting from the likelihood distri-
butions defined above to a probability of a given tissue proportion given the data P(t|gv).
The conditional probability of a grey level being due to a certain mechanism n (either a
pure or mixture tissue component) can be calculated using Bayes theory, as follows:

P(n|g) =
dn(g) fn

∑t( fO + dt(g) ft ) + ∑t ∑s dts(g) fts
(5)

where fn, fO, ft and fts are effectively ”priors”, expressed here as frequencies (i.e.
number of voxels) which belong to a particular tissue type, pure tissues or partial volumes.
Unknown tissues are accounted for in the Bayesian formulation by including a fixed extra
term fO for infrequently occurring outlier data [2] in total probability which enables
separation of pathological tissues.

Noise free estimates of the individual image grey-levels g′i can be calculated using

g′i = gi P(O|g) + ∑
t

git P(t|g) +∑
t

∑
s

git P(ts|g) (6)

Where git is the expected pure tissue grey level for image i. This formulation implicitly
reverts to the original image grey-level for outlier data (large P(O|g)). In addition, failure
to model individual voxels can be identified by checking for consistency between the
filtered image and original. In particular, any reconstructed grey-level value which differs
from the original by more than 3 standard deviation of the image noise can be said to be
inconsistent with the model. This value can then be replaced with the original value in
order to preserve all significant information present in the original image.

Finally, in order to use the results form the multi-spectral technique as gold standard
there are a few issues which must be addressed. The first is that multi-spectral filtering is
expected to eliminate spatially distributed errors, such as field in-homogeneity. Although
these are expected to be small in our data (in comparison to intrinsic image noise) they also
vary between acquisitions and will bias comparisons of residual distributions. In order to
eliminate the majority of these effects we construct our pseudo-gold standard by removing
a smooth estimate of local difference between the multi-spectral reconstruction and the
original image, (constructed using a 5 pixel S.D. Gaussian kernel). Secondly, the multi-
spectral noise filtering process removes noise in a tissue dependant manner (also removing
genuine tissue variability which cannot be interpreted as a partial volume process), so that
residual difference distributions are not simple Gaussians. Therefore we fit all residual



distributions within 3 S.D. of the estimated image noise with the sum of two Gaussians
with the same mean but individual widths and normalisations (parameters A and B in
Table 2). It is the results of this fitting process which we wish to reconcile with the results
from Monte-Carlo and ROM quantification.

3 Results
Original and reconstructed images following co-registration and partial volume analysis
are shown in Figure 2.

The noise level (σoriginal) in each image was estimated using the LNE technique. Tan-
gential filtering was applied by averaging over three pixels (one central and two either
side). Gaussian filtering was done using a spatial filter with S.D. of 1 pixel. Median
filtering was performed over the local neighbourhood of 9 pixels. The Monte-Carlo sta-
bility analysis estimates of the fraction of noise remaining after filtering and the number
of voxels lying beyond 3 S.D. of the model (ROM) are listed in Table 1.

LNE Median Gaussian Tangential Multi-Spectral
IRTSE 58.76 0.64 (1559) 0.27 (2405) 0.66 (698) 0.22 (1689)
VE(PD) 64.06 0.66 (1466) 0.26 (3127) 0.68 (530) 0.20 (1804)
VE(T2) 58.2 0.63 (1287) 0.26 (1909) 0.69 (426) 0.17 (938)
FLAIR 52.4 0.63 (1934) 0.27 (3827) 0.69 (966) 0.13 (4971)

Table 1: Monte-Carlo and ROM Estimates

Following partial volume filtering the reconstructed images were corrected for low
frequency spatial noise as described in the methods section. The resulting images were
then used as the basis for evaluation of spatial filtering techniques applied to the original
images (Table 2).

Original Median Filter
Mean A σ1 B σ2 Mean A σ1 B σ2

IRTSE -4.6 0.47 44.5 0.53 75.3 0.39 0.39 21.9 0.61 63.7
VE(PD) -4.9 0.54 37.5 0.46 90.6 -7.7 0.60 25.7 0.40 81.5
VE(T2) -7.0 0.34 23.9 0.66 62.9 -7.1 0.58 21.7 0.44 61.5
FLAIR 0.27 0.50 37.1 0.50 93.9 0.15 0.49 20.7 0.51 74.0

Gaussian Smoothing Tangential Smoothing
Mean A σ1 B σ2 Mean A σ1 B σ2

IRTSE 1.1 0.35 14.5 0.65 65.3 -1.1 0.46 29.3 0.54 65.4
VE(PD) 0.77 0.36 10.6 0.64 52.2 4.3 0.51 24.2 0.49 75.1
VE(T2) 1.12 0.35 8.6 0.65 43.7 4.4 0.41 17.2 0.59 49.7
FLAIR 0.79 0.38 10.6 0.62 56.2 0.2 0.43 19.7 0.57 68.1

Table 2: Quantitative Performance of Spatial Filtering

Though the fits to the double Gaussian are less stable than those from the Monte-
Carlo the results confirm that for the central narrow component the widths of the residual
distribution vary by amounts consistent with the prediction. In addition the proportion
of the secondary Gaussian components and secondary peak widths give an estimate of
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Figure 2: (a) Inversion Recovery Turbo Spin Echo (b) Filtered IRTSE (c) Variable Echo
(PD) (d) Filtered VE(PD) (e) Variable Echo (T2) (f) Filtered VE(T2) (g) FLAIR (h) Fil-
tered FLAIR



the number of failures. While the Gaussian filter reduces the width of both the primary
and the secondary Gaussian distribution, the proportion of data in the broader part of
the distribution has also increased. The proportion of data in the secondary Gaussian
remains the same for tangential smoothing and median filtering as for the original image.
However, there is additional broadening of the secondary distribution for the median filter,
as predicted by the ROM data. The data are in general reconcilable with ROM estimates,
with the one exception being the lack of evidence for significant outlier proportion in
multi-spectral filtering of FLAIR images. We believe that this is most likely due to flow
artefact in the FLAIR images which has then been removed from the reference image by
low frequency residual subtraction. A summary of the results for all filtering techniques
are given in Figure 3 by plotting ROM (in voxels) vs Monte-Carlo (the fraction of noise
remaining after filtering) estimates. On this graph we see that in general multi-spectral
filtering is no more destructive to image contents than tangential smoothing or median
filtering but removes more image noise than Gaussian smoothing. Therefore, such image
reconstruction techniques may be a useful way of getting the most from multiple MR
acquisitions. Software and test data are available on the web (www.tina-vision.net).

Figure 3: Residual Outlier Measure (ROM) vs Monte-Carlo Stability: Multi-spectral Fil-
tering +; Gaussian Smoothing X; Median filtering �; Tangential Smoothing O.

4 Discussion and Conclusions
Multi-spectral filtering can be considered as a regression onto the lines joining pairs of
pure tissue locations in the multi-dimensional grey level space, followed by a weighting
with pure tissue values according to the Bayesian priors. Any voxels composed of pure
tissues of appropriate mean values will therefore have the noise on each grey level re-
moved in such a way as to make the grey level value more consistent with the estimated



position along this partial volume line (Figure 4). The results of such an analysis can be
also interpreted as a method of data fusion, where data from alternative modalities are
combined in order to improve the data from each. The results demonstrate that such an
approach does not produce the loss of high spatial frequency structure inherent in even
the most careful spatial filtering schemes.

(a) (b) (c) (d)

Figure 4: Grey Level Distributions before (a) and after (b) Partial Volume Noise Filtering
for IRTSE and VE(PD) images, and before (c) and after (d) Partial Volume Noise Filtering
for VE(T2) and FLAIR images.

There is a subtle but important difference between using models based upon spatial
distribution and those based upon partial volume behaviour for MR analysis. The for-
mer can only be determined from example data and there can never be a spatial model
which will be appropriate for the contents of all biological images. Grey level density
models however, have statistical characteristics which are purely determined by the ac-
quisition process (i.e. the underlying physics of the measurement process). We might
therefore expect that if we knew enough about the image formation process for a partic-
ular imaging protocol we may be able to construct a model which is true for all images
from a particular acquisition containing equivalent tissue types. This approach to filtering
may therefore be regarded as a gold standard for testing of spatial filtering techniques.
In comparison to other mechanisms for the generation of test data, the most commonly
used technique is probably the BRAINWEB [3, 7] simulation. This can be thought of
as equivalent to the final stages of the reconstruction process presented here, except that
their volume estimation process is based upon a ”fuzzy” minimum distance classifier, not
explicit partial volume estimation, and of course they have one fixed model. Our approach
raises the possibility of generating personalised models with checks on the validity of the
reconstruction process.

This paper has shown how techniques generally used for tissue segmentation can be
used to provide noise filtering of multi-spectral images based upon an analysis of partial
volume structure. We have used this data to corroborate the use of performance measures
which do not require a ‘gold standard’. We conclude that the combination of an ROM and
a Monte-Carlo stability analysis are sufficient to predict the important characteristics of a
noise filtering scheme.The Monte-Carlo analysis might be expected to give results which
are the same regardless of image contents for well designed algorithms. However, the
ROM measure must vary according to scene contents and must therefore be interpreted
as a ”scenario evaluation” [12].
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tissue segmentation using grey-level gradient. In Proceedings of Medical Image
Understanding and Analysis, pages 17–20. BMVA, 2002.


