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Abstract

The detection of moving objects from video frames plays an important
and often very critical role in different kinds of machine vision applica-
tions including human detection and tracking, traffic monitoring, human-
machine interfaces and military applications, since it usually is one of the
first phases in a system architecture. A common way to detect moving ob-
jects is background subtraction. In background subtraction, moving objects
are detected by comparing each video frame against an existing model of the
scene background. In this paper, we propose a novel block-based algorithm
for background subtraction. The algorithm is based on the Local Binary Pat-
tern (LBP) texture measure. Each image block is modelled as a group of
weighted adaptive LBP histograms. The algorithm operates in real-time un-
der the assumption of a stationary camera with fixed focal length. It can
adapt to inherent changes in scene background and can also handle multi-
modal backgrounds.

1 Introduction

Background subtraction is often one of the first tasks in machine vision applications,
making it a critical part of the system. The output of background subtraction is an input
to a higher-level process that can be, for example, the tracking of an identified object.
The performance of background subtraction depends mainly on the background model-
ling technique used to model the scene background. Especially natural scenes put many
challenging demands on background modelling since they are usually dynamic in nature
including illumination changes, swaying vegetation, rippling water, flickering monitors
etc. A robust background modelling algorithm should also handle situations where new
stationary objects are introduced to or old ones removed from the scene. Furthermore
the shadows of the moving and scene objects can cause problems. Even in a static scene
frame-to-frame changes can occur due to noise and camera jitter. Moreover, the back-
ground modelling algorithm should operate in real-time. In this paper, we propose a
novel texture-based approach to background subtraction. The goal of the new approach
was to address all of the above-mentioned difficulties except the handling of shadows
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which turned out to be an extremely difficult problem to solve with background model-
ling.

2 Related Work

Different kinds of methods for detecting moving objects have been proposed in the lite-
rature. The most commonly used cue is pixel intensity. One very popular technique is to
model each pixel in a video frame with a Gaussian distribution. This is the underlying
model for many background subtraction algorithms. A simple technique is to calculate an
average image of the scene, to subtract each new video frame from it and to threshold the
result. The adaptive version of this algorithm updates the model parameters (mean and
covariance) recursively by using a simple adaptive filter. This approach is used in [16].
The previous model does not work well in the case of dynamic natural environments since
they include repetitive motions like swaying vegetation, rippling water, flickering moni-
tors, camera jitter etc. This means that the scene background is not completely static. By
using more than one Gaussian distribution per pixel it is possible to handle such back-
grounds [2, 3, 13]. In [13], the pixel intensity was modelled by a mixture of weighted
Gaussian distributions. The weights were related to the persistence of the distributions
in the model. In [2], the mixture of Gaussians approach was used in a traffic monitoring
application. The model for pixel intensity consisted of three Gaussian distributions corres-
ponding to the road, the vehicle and the shadow distributions. Adaptation of the Gaussian
mixture models can be achieved using an incremental version of the EM algorithm.

The Gaussian assumption for pixel intensity distribution does not always hold. To deal
with the limitations of parametric methods, a non-parametric approach to background
modelling was proposed in [1]. The proposed method utilises a general non-parametric
kernel density estimation technique for building a statistical representation of the scene
background. The probability density function for pixel intensity is estimated directly from
the data without any assumptions about the underlying distributions.

In [5, 11], each image pixel was modelled with a Kalman filter. The proposed method
can adapt to changes in illumination, but has problems with complex dynamic back-
grounds. This approach was used in the automatic traffic monitoring application pre-
sented in [6]. In [17], the dynamic texture (background) is modelled by an ARMA model.
A robust Kalman filter algorithm is used to iteratively estimate the intrinsic appearance of
the dynamic texture as well as the regions of the foreground objects.

Hidden Markov Models (HMMs) have also been used to model pixel intensity. In this
approach, the pixel intensity variations are represented as discrete states corresponding to
scene modes. In [12], the approach was used in a traffic monitoring application where
the pixel states represented the road, vehicles and shadows. In [14], HMM states corre-
sponded to global intensity modes each modelled with a single Gaussian distribution. The
model was capable of handling sudden illumination changes.

Modelling the scene background using edge features has also been under research. In
[7], the background model was constructed from the first video frame of the sequence by
dividing it into equally sized blocks and calculating an edge histogram for each block.
The histograms were constructed using the pixel-specific edge directions as bin indices
and incrementing the bins with the corresponding edge magnitudes. In [4], a fusion of
edge and intensity information was used for background subtraction.



Motion based approaches have also been proposed for background subtraction. The
algorithm presented in [15] detects salient motion by integrating frame-to-frame optical
flow over time. Salient motion is assumed to be motion that tends to move in a consistent
direction over time. The saliency measure used is directly related to the distance over
which a point has traveled with a consistent direction.

Region-based algorithms usually divide an image into blocks and calculate block-
specific features. Change detection is achieved via block matching. In [8], the block
correlation is measured using the NVD (Normalised Vector Distance) measure. In [7], an
edge histogram calculated over the block area is used as a feature vector describing the
block. The region-based approaches allow only coarse detection of the moving objects
unless a multi-scale approach is used.

3 New Approach

3.1 LBP Operator

The proposed texture-based method for background subtraction is based on the Local Bi-
nary Pattern (LBP) texture measure. The LBP is a powerful means of texture description.
The operator labels the pixels of an image block by thresholding the neighbourhood of
each pixel with the center value and considering the result as a binary number (LBP code):

LBP(xc,yc) =
P−1

∑
p=0

s(gp−gc)2p, (1)

wheregc corresponds to the grey value of the center pixel(xc,yc) andgp to the grey values
of theP neighbourhood pixels. The functions(x) is defined as follows:

s(x) =
{

1 x≥ 0
0 x < 0

. (2)

The original LBP operator worked with the 3×3-neighbourhood of a pixel [9]. See
Figure 1 for an illustration of the operator. The general version of the LBP operator
uses a circularly symmetric neighbour set as illustrated in Figure 2 [10]. In this case,gp

corresponds to the grey values ofP equally spaced pixels on a circle of radiusR.
The histogram of the LBP codes calculated over an image block can be used as a tex-

ture descriptor for the block. As can be seen from (1), the LBP is invariant to monotonic
changes in grey scale.

3.2 The Method

The goal of the proposed method is to identify regions of a video frame that contain
moving objects. The method divides each new video frame into equally sized blocks by
using a partially overlapping grid structure as illustrated in Figure 3. By using partially
overlapping blocks it is possible to extract the shape of the moving object more accurately
than in the case of non-overlapping blocks.

Let us consider the feature vectors of a particular image block over time as a block
process. Since we use an LBP histogram as the feature vector, the block process is defined
as a time series of LBP histograms. We denote the block histogram at time instantt by xt .
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Figure 1: Example for calculating the original LBP code.
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Figure 2: Circularly symmetric neighbour sets for different values ofP andR. The values
of neighbours that do not fall exactly on pixels are estimated by bilinear interpolation.

As mentioned in the previous section, LBP is invariant to monotonic changes in grey scale.
This makes it robust against illumination changes. Since the LBP histogram does not
contain information about the positions where the individual LBP codes were calculated,
it also supports the modelling of multi-modal backgrounds. LBP is computationally very
fast, which is an important property from the practical implementation point of view.
Furthermore, we use more than one histogram to model each block.

The history of each block,{x1, ...,xt}, is modelled by a group ofK weighted LBP
histograms. We denote the weight of thekth histogram at time instantt by ωk,t . In the
following, we explain the background model update procedure for one block, but the
procedure is identical for each block. We utilise some ideas proposed by Stauffer and
Grimson in [13].

The first thing to do is to compare the new block histogramxt against the existing
K model histograms using a distance measure. We used the histogram intersection as
the distance measure in our experiments. The histogram intersection for the normalised
histogramsx1 andx2 is defined as follows:

H(x1,x2) = ∑
i

min(x1,i ,x2,i), (3)

wherei is the bin index of the histogram. The user defines the threshold valueTD for the
histogram intersection as a method parameter. Notice that it is also possible to use other
measures such as Chi-square or Log-likelihood.



Figure 3: Partially overlapping grid structure used by the algorithm.

If none of the model histograms is close enough to the new histogram, the model
histogram with the lowest weight is replaced with the new histogram and is given a low
initial weight. After this, the weights are normalised so that they sum up to one.

If a model histogram close enough to the new histogram was found, the bins of this
histogram are updated as follows:

xk,t [i] = αbxt [i]+ (1−αb)xk,t−1[i], αb ∈ [0, 1], (4)

whereαb is the user-defined learning rate. In addition, the weightsωk,t are updated as
follows:

ωk,t = (1−αw)ωk,t−1 +αwMk,t , αw ∈ [0, 1], (5)

whereαw is the user-defined learning rate andMk,t is 1 for the matched histogram and 0
for the others.

Next, we need to decide which of the histograms of the model are most likely pro-
duced by the background processes. We use the persistence of the histogram as an evi-
dence for this. Because the persistence of thekth histogram is directly related to its weight
ωk,t , the histograms are sorted in decreasing order according to their weights. As a result
the most probable background histograms are on the top of the list.

As a last phase of the updating procedure, the firstB histograms are selected to be the
background model as follows:

ω1,t + ...+ωB,t > TB, TB ∈ [0, 1], (6)

whereTB is the user-defined threshold for the selection. If we are modelling a unimodal
background, a small value forTB should be sufficient. In the case of a multi-modal back-
ground, a larger value forTB is recommended. A small value forTB selects only the most
probable histogram to be the background model, whereas a large value allows the his-
togramxt to get more bin configurations since the background model consists of more
than one histogram.

Foreground detection is achieved via comparison of the new block histogramxt against
the existingB background histograms selected at the previous time instant. If a match is
not found, the block is considered to belong to the foreground. Otherwise, the block is
marked as background.



4 Experiments

The performance of the proposed method was evaluated using several video sequences.
Both indoor and outdoor scenes were included. Figure 5 shows the results for the indoor
test sequence where a person is walking in a room. As can be seen, the algorithm can
separate the moving object almost perfectly. Because the algorithm is block-based, there
occur some false positives on the contour areas of the object. Figure 6 shows the results
for the indoor test sequence where a person walks towards the camera. Many adaptive
pixel-based methods output a huge amount of false negatives on the inner areas of the
moving object, because the pixel values stay almost the same over time. The proposed
method gives good results, because it exploits information gathered over a larger area
than a single pixel. The indoor test sequence illustrated in Figure 7 tests how well the
algorithm handles a situation with a sudden illumination change. As can be seen the
adaptation is pretty fast. The adaptation speed can be controlled with the learning rate
parametersαb andαw. The bigger the learning rates are the faster the adaptation. Figure 8
shows the results of our algorithm for the outdoor test sequence, which contains relatively
small moving objects. The original sequence has been taken from the PETS database
(ftp://pets.rdg.ac.uk/). The proposed algorithm successfully handles this situation,
but the shape information is not preserved well because of the block-based approach.
The test sequence in Figure 9 contains heavily swaying trees in the wind and rippling
water, which make it a very difficult scene from the background modelling point of view.
There can also be some camera jitter present because of the wind. Since the method was
designed to handle also multi-modal backgrounds, it manages the situation relatively well.
The values of the method parameters used for the test sequences can be found from Table
1.

From the test results we can see that our algorithm preserves the shape of a moving
object pretty well in the case of large objects. Because the approach is block-based, the
detection of very small objects can be done only coarsely.

We measured the sensitivity of the algorithm to small changes of its parameter values.
The most sensitive parameter is the distance thresholdTD which is used during the com-
parison of the histograms. The selected LBP operator mainly imposes the value ofTD. In
summary, the algorithm proved not to be very sensitive to small changes in its parameter
values, which makes the selection process quite easy.

The performance of the proposed algorithm was compared to four algorithms repre-
senting state-of-the-art pixel and block-based approaches [7, 8, 13, 5, 11]. We manually
labelled five frames from all of the five test sequences and calculated the accumulated
sums for the true negatives and the true positives reported by the algorithms for the test
sequences. The results are illustrated in Figure 4. The overall performance of our ap-
proach seems to be better than the performance of the comparison methods. The new
method detected moving objects very accurately (true positives). The proportion of the
true negatives was also pretty good. As can be seen from Figures 5-9, most of the false
positives occurred on the contour areas of the moving objects. This is satisfactory because
our approach is block-based.

We also measured the real-time performance of our algorithm. For the parameter
values used in the tests, a frame rate of 28 fps was achieved. We used a standard PC with
a 1.8 GHz AMD Athlon XP CPU processor and 512 MB of memory in our experiments.
The image resolution was 320×240 pixels.



Test Sequence Block SizeLBPP,R K αb αw TD TB

1 (Figure 5) 12×12 LBP6,1 4 0.010 0.010 0.35 0.5
2 (Figure 6) 12×12 LBP6,1 4 0.010 0.010 0.35 0.5
3 (Figure 7) 12×12 LBP6,1 4 0.050 0.020 0.35 0.8
4 (Figure 8) 12×12 LBP6,2 3 0.005 0.005 0.50 0.9
5 (Figure 9) 12×12 LBP6,2 5 0.015 0.015 0.50 0.9

Table 1: The parameter values used in the tests.
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Figure 4: The proportions of the correctly classified pixels reported by the algorithms for
the test sequences.

5 Discussion

In this paper, a novel block-based approach for detecting moving objects from video
frames was proposed. Since the algorithm uses partially overlapping blocks, the shape
information of the moving objects is preserved relatively well. The recent history of each
block is modelled by a group ofK weighted adaptive LBP histograms. The LBP is in-
variant to monotonic changes in grey scale, which makes it robust against illumination
changes. The LBP also supports the modelling of multi-modal backgrounds. To make the
model adaptive we update it at each discrete time instant.

The proposed algorithm was tested against several test sequences including both in-
door and outdoor scenes. It proved to be tolerant to illumination changes and multi-
modality of the background. Since the algorithm is adaptive, it also manages situations
where new stationary objects are introduced to or old ones removed from the scene back-
ground. Furthermore, the algorithm operates in real-time, which makes it well suited to
systems that require real-time performance.
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Figure 5: Frames 226, 240, 246, 328 and 344 from an indoor test sequence where a person
is walking in a room.

Figure 6: Frames 300, 340, 380, 420 and 440 from an indoor test sequence where a person
is walking towards the camera.



Figure 7: Frames 330, 340, 350, 360 and 370 from an indoor test sequence where the
lights are just turned on.

Figure 8: Frames 150, 590, 920, 1000 and 1340 from an outdoor test sequence taken from
the PETS database.

Figure 9: Frames 280, 300, 320, 350 and 380 from an outdoor test sequence where two
persons are walking in front of heavily swaying threes and rippling water. There can also
be some camera jitter present because of the wind.


