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Abstract

We propose a video representation, the Video Scene Trajectory, computed
from localised temporal-change in order to capture the holistic action content
in a sequence. Such a representation is critical for action based genres such
as surveillance. We show that an analysis of the trajectory shape is able to
produce a temporal segmentation. Furthermore, we build an action based
video summary using the Top Discriminative Active Pixels in the segments.
Experiments are presented on real-world outdoor surveillance scenes.

1 Introduction

It is highly desirable to perform automatic video analysis using the video action con-
tent rather than static visual features. This commonly requires the detection of known
events and activities in a specific scene through supervised training. However, content
recognition approaches are difficult because of tracking problems in cluttered scenes and
are limited because they are not scalable beyond the training scene. Our alternative phi-
losophy is that video analysis can be achieved without the need to explicitly model the
object-level content.

An important early task in video analysis is the formation of a temporal segmenta-
tion. It is concerned with dividing the sequence into segments that contain related content
and providing a hierarchical decomposition. Many reported approaches find shot breaks
at positions of sharp change between frames [14] and scene breaks by a process of shot
grouping [7]. Techniques are usually colour-based and are often dependent on data being
manually structured (i.e. edited into shots). There is a growing need for temporal seg-
mentation approaches that operate on unstructured video data, for example on a corpus of
home video [9, 6] or surveillance [5].

Generating video summaries is a key component of a video analysis system. A video
summary aims to quickly impart knowledge to the viewer about the video content. Tra-
ditionally a video summary (or abstract) is a collection of static frames chosen to ‘most’
represent the video content and shown simultaneously. The process requires the detection
of key-frames in the sequence and numerous approaches have been reported in litera-
ture, including using the first/last/mid frame or frame clusters [15]. Unfortunately a static
frame based video summary does not provide any information on the action content that
was present and is fundamental in action based genres like surveillance.
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In this paper we develop a wavelet-based holistic video representation that can be
used to solve the temporal segmentation task in unstructured video from a fixed view. We
exploit activity information rather than colour because we found in previous work that
colour information is not expressive enough in outdoor scenes [5]. In general, motions can
be interpreted as orientations over time and analysed using motion-sensors [2] or image-
slices [10]. Following the success of the temporal-change based approaches reported in
literature [1, 4], we employ localised orientation filters to analyse the holistic appearance
of temporal change in each frame. Similar recognition based methods have been reported
for indoor activities [1] and complex outdoor events [4]. In this work, we use a holistic
frame description because it requires no prior knowledge about the scene (such as object
level detail) and is thus scalable to large video data-banks. This is critical if a diversity of
surveillance videos with varying scene content needs to be analysed. We form a holistic
video sequence descriptor by monitoring the change in local filter responses over time.
Content breaks are found at points of discontinuity in the representation. We present a
novel approach for video summarisation using the discriminative action that was present
in each detected segment.

In Section 2 we describe our Video Scene Trajectory (VST) representation and demon-
strate how it captures changes in the scene action content without the need for explicitly
performing event and activity detection and recognition. In Section 3 we describe how the
trajectory is analysed to produce: (1) a temporal segmentation using a trajectory approx-
imation; and (2) a video summary using the most discriminative pixels in each segment.
Our video summary approach is inspired by term weight computation in classical text
document retrieval. In Section 4 we present results obtained from surveillance sequences
and we conclude in Section 5.

2 Video representation without activity recognition

2.1 Holistic temporal filter based descriptors

We compute a frame-wise change description for reflecting activity in the scene. More
precisely, the recursive computation of Pixel Change History (PCH) is defined as:

PCHα,β(x,y, t) =

{

min(PCH(x,y, t−1)+α,1) D(x,y, t)>T h
max(PCH(x,y, t−1)−β,0) otherwise

(1)

where α and β are the accumulation and decay factors, D is the frame difference function
|I(x,y, t)−I(x,y, t−1)| computed between the grey-scale of neighbouring frames each
smoothed with a Gaussian filter. The PCH is between [0,1] for each pixel position where
a high value indicates that a period of sustained change has taken place. The threshold
T h, accumulation factor α and smoothing filter are used to reduce the effect of sensory
noise. The decay factor β determines the size of the activity memory. See Figure 1.

The PCH image is divided into a grid of equally sized cells each of which is then
described using the Haar wavelet transform. The cell-size determines the granularity of
the descriptors and is chosen according to the scene layout and computational limitations.
Moments of Haar wavelet coefficients are known to be effective for texture analysis and
provide a good compromise between computational complexity and effectiveness [13].
Comparable approaches such as Gaussian derivatives and Gabor wavelets offer little im-



Figure 1: Extracts from an outdoor surveillance sequence and the computed PCH. Simi-
lar activities (person walking left) produce similar visual structures despite the cluttered
background. A person walking right and a passing bicycle produce different PCH profiles.

provement in result and are known to be computationally demanding [11]. We therefore
opt for the simple Haar basis because of our scalability demands:

Ψ(x) =







1 0 ≤ x < 0.5
−1 0.5 ≤ x < 1
0 otherwise

(2)

that is applied using the standard wavelet transform:

φ j
i (x) = φ(2 jx− i) (3)

where x is the input to be translated using the number of scales j and position i. When
computed upon the PCH space the transform captures the visual structure and direction-
ality of the local action. We compute the mean coefficients in the LH, HL and HH bands,
forming a 3D feature space that captures the amount of energy in the vertical, horizontal
and diagonal directions.

We now form a frame description to capture the translation invariant action that is
occurring. To this end, we perform clustering on the coefficient feature space computed
for the whole sequence using k-means clustering. The cluster centroids each represent
a commonly occurring class of filter response (or localised action shape). The classes
form an iconic vocabulary used to describe each frame by (a) labelling each cell using
the closest class by Euclidean distance, and (b) forming a histogram to capture the class
occurrence in the frame. At each frame the number of class occurrences is constant:

∀T
t=1

(

κ

∑
k=1

FrmOcc(t,k) = N

)

(4)

where FrmOcc gives the number of occurrences for a frame/class, N is the number of
cells in the frame, T is the number of frames and κ is the number of clusters.



Figure 2: The frames and PCH computed from a sequence that captures a hand performing
free drawing of three distinct shapes. The motion patterns of the shapes are clearly visible
and are distinct. Each scene is characterised as having a different profile (the sum of frame
histograms) of filter responses throughout its period.

2.2 A continuous scene descriptor

The key to our approach is that a scene can be defined as having a similar profile of filter
responses throughout its period. This is illustrated in Figure 2. In order to form a con-
tinuous representation for the sequence that captures the long term content and thematic
changes, we form a scaled cumulative histogram using the frame descriptions:

∀T
t=1∀

κ
k=1 ClsOcc(t,k) =

ClsOcc(t−1,k)+FrmOcc(t,k)
ClsOcc(T,k)

(5)

where ClsOcc gives the cumulative total at frame t for class k and ClsOcc(0,k) = 0 for all
classes. FrmOcc is the frame histogram defined in Equation (4). It is clear that ClsOcc
increases monotonically with t for each class. The result is scaled between [0,1] at each
point using the final value at T . The use of a scaled cumulative histogram has the bonus
effect of reducing the influence of noisy filters that occur very frequently.

The variations in the scaled cumulative histogram captures the filter activation com-
binations that describe the changing video content. The dimensionality of the histogram
is equal to the number of clusters κ used to form the frame descriptions. This can be high
meaning that it is difficult to analyse effectively and find the important profile changes.
In addition many of the classes are in fact unimportant as they capture non discriminative
action, e.g. very frequent background noise. Therefore, in order to focus the representa-
tion on what is important we computed the principal subspace of the scaled cumulative
histogram using Principal Components Analysis (PCA) and re-project each t into the low
dimensional eigenspace.

We use the first ω eigenvectors to form a Video Scene Trajectory (VST) for the se-
quence. The smooth/continuous trajectory indicates that the underlying filter response
profile is approximately constant and the scene action content is not changing. For visual-
isation purposes we use ω=3 in Figure 3, where (a) we show a trajectory produced using
the method above but using a colour histogram as the frame description; (b) we show our
action based Video Scene Trajectory. It is clear that using colour produces a very noisy
trajectory that is not consistent with the video content whereas the VST has three distinct
phases that correctly correspond to the content shown in Figure 2.



(a) (b) (c)

Figure 3: Trajectories for the sequence shown in Figure 2: (a) Computed using a colour
histogram as the frame description. The lack of temporal consistency in the representation
leads to errors in the temporal segmentation; (b) A Video Scene Trajectory. It is clear
that the trajectory contains three distinct phases that correctly correspond to the the three
scenes in the video; and (c) The piecewise approximation of (b). The approximation
retains the shape of the trajectory using the most important vertices.

3 Video segmentation and summarisation

Given a video sequence of T frames, {F1,F2, . . . ,FT}, we now address how the VST is
used to generate a temporal segmentation of N segments, {S1,S2, . . . ,SN}, each beginning
at frame t =SS

i and ending at t = SE
i . Considering that the trajectory is smooth when the

action content in the scene is stable, our approach is to detect the key trajectory alterations
and use these positions as the breaks. To this end, we generate a linear piecewise approx-
imation of the trajectory that retains the key vertices using the Discrete Curve Evolution
(DCE) algorithm proposed by DeMenthon et al [3]:

1. The ‘relevance’ of each vertex on the trajectory is computed using:

rel(t) = dist(t−1, t)+dist(t, t+1)−dist(t−1, t+1) (6)

where dist is the Euclidean distance. The relevance score rel is low if the
point can be removed from the trajectory without significantly increasing
the reconstruction error.

2. The vertex with the last relevance is removed
3. Repeat until the required number of vertices λ = (N+1) remain

The retained vertices are used as the break points in a temporal segmentation and the
content between vertices is considered a video ‘segment’. An example approximation is
given in Figure 3 (c). The DCE process is both highly efficient and effective, however one
problem is that it operates on the trajectory in batch (i.e. it needs the whole trajectory to
find the approximation). Alternative on-line methods could be exploited [8].

We now describe how we use the temporal segmentation for generating an action-
based video summary. Our approach is to generate a segment summary frame for each
segment using active pixels to indicate where action took place in that segment. To find the
set of active pixels Pi that best represent segment i we evaluate each pixel using: (1) how
active the pixel is in the segment; and (2) how good the pixel is for describing a segment
considering the sequence. The motivation for 2 is that we wish to use the pixels that are
most discriminative, i.e. are best for describing the unique content in the segment and
minimise noise. This is similar to the tf-idf (term frequency, inverse document frequency)
term weight strategy in text document indexing [12].



For each pixel we compute its activity in segment i as:

Ai(∀
x
,∀y) =

∑
(SE

i −1)

t=SS
i

PCH(x,y, t) > T h

maxAi
(7)

where T h is a threshold to determine significance and maxAi is used to scale the result to
[0,1]. For each pixel we compute its discrimination ability in the sequence as:

D(∀x
,∀y) = log

(

T

∑T
t=1 PCH(x,y, t) > T h

)

(8)

A score for each pixel is computed using ∀x ∀y Ai(x,y)D(x,y) and the pixels with the high-
est τ% of scores are used to form Pi for segment i. These pixels are the Top Discriminative
Active Pixels in the segment and provide an indication of the key action that occurred. A
segment summary frame (SSF) is formed by merging Pi with the first frame SS

i in order
to provide visual context:

SSFi(x,y) = ∀x∀y
{

255 i f (x,y) ∈ Pi

γ Ss
i (x,y) otherwise

(9)

where γ is a scalar between [0,1]. A video summary is computed by forming an SSF for
all of the detected segments and presenting them simultaneously to the viewer.

4 Experiments

We performed experiments on temporal segmentation and video summarisation using the
following surveillance sequences:

Name (x,y,t) Description
PETS (768,576,3064) An outdoor uncluttered car park scene

RAMP (320,240,11000) A busy aircraft docking ‘ramp’ scene
T4 (320,240,6400) An airport access road with moving traffic
T2 (320,240,5000) A busy airport set-down area

The PETS sequence contains an uncluttered outdoor scene that suffers from noisy pix-
els due to camera vibrations. The RAMP sequence can be considered as semi-structured
as the order of activities in the aircraft docking scenario are known. The T4 and T2 se-
quences are unstructured. Example frames are shown in Figure 6. Clearly it is difficult to
impart knowledge about the sequence action content using static frames. It is interesting
to note that, although the frames are colour, little useful colour information exists.

We computed the Video Scene Trajectory representation (Section 2) for all the se-
quences using the same parameters of {α=100,β=10,Th=30} for computing the activ-
ity of Equation (1) and {κ=20,ω=3}when forming the scene descriptor. The choice of κ
was made to ensure that the iconic vocabulary was sufficient to adequately describe each
frame. The choice of ω was made because the top 3 principal components captures almost
all (99.8%) of the variance. Note that the top eigenvector captures the cumulative aspect
of the descriptor. We next computed the automatic temporal segmentation and video sum-
mary (Section 3) for each sequence using the number of segments λ=[8,10,10,10] and
{τ = 10%,γ = 0.5}. We used λ = 8 for the PETS sequence in order to compare against
manually identified segments.



In Figure 5 we show summaries computed for the first three segments/scenes in the
PETS sequence using key-frames, segment summary frames (SSFs) computed using the
most active pixels in the segment, and SSFs computed using the Top Discriminative Ac-
tive Pixels in the segment. It is clear that the first or mid frame approach often used in
literature does not convey information about the content. Using the most active pixels in
the segment is an improvement, but suffers from noise due camera vibration that particu-
larly effects pixels at which there are strong spatial edges, e.g. at building outlines. The
discriminant factor D from Equation (8) visualised in Figure 5 (f) captures these areas and
reduces their influence. The result is a clearer SSF as shown in Figure 5 (e).

Manual breaks were identified in the PETS sequence and are marked in Figure 4 (a).
However we emphasise that manual segmentation of unstructured data is highly subjec-
tive. Video summaries were produced and are shown in Figure 7 and can be used to
formulate an idea of the content of the segments. We have highlighted four interesting
points in Figures 4 and 7 for analysis:

A the automatic break and manual break are not close. However, upon inspection we
found that a wide number of points can be considered as ‘correct’. This non-error
highlighted the problems of using manual segmentations for evaluation purpose.

B a short automatic segment was discovered that was not manually marked. Upon
inspection we found that the segment contained unique ‘car reversing’ content that
produced a distinctive signature in the trajectory.

C a number of manual breaks are missed. Upon inspection we found that the auto-
matic method had grouped a number of very similar actions: people walking and a
bicycle moving across the view.

D in the RAMP sequence, a seemingly large amount of trajectory variation is not
accounted for in the segmentation. Upon inspection we found that the automatic
segmentation had correctly grouped a large number of related unloading activities
into a single long scene. The trajectory alterations are never violent enough to
warrant an automatic break.

For the semi-structured sequence (RAMP), the discovered segments and resultant
video summary do follow the strict timetable of events that is known to occur: (1) empty
bay; (2) both plane arrival and ramp attachment have occurred; (3) loading vehicle activ-
ity can be seen; (4) small vehicle activities; (5) passing plane; (6) passing and obstructed
vehicle; (7) another passing plane; (8) ramp activity; (9) plane departure. The video sum-
mary provides important and useful orientation for a viewer that is familiar with the scene.
A semi-automatic search process can now continue as the viewer drills-down towards the
target frames using knowledge about the expected order of events.

For the unstructured sequences (T4 and T2), the summaries produced reflect the action
content and can be used to instigate deeper searches, e.g. in T4 scene 8 we might wish
to analyse the segment further to discover the cause of the unusual shape that is present
in the centre of the segment summary (in fact it is caused by a car reversing the wrong
way down the slip-road; a very interesting section of video). However, the result for
T2 is not entirely clear. This is partly because there is no structured/semantic content
in the sequence, i.e. there is no structure to find, but mainly due to incorrect choice of
granularity for the sequence. An automatic method for choosing the number of breaks λ
is an area for future investigation.



5 Conclusions

We have presented a novel holistic wavelet-based video representation that can be used
to perform video analysis without the need for explicit object and activity detection and
tracking. The representation is based upon temporal-change and so implicitly reflects the
action content that is present in the video. We monitor holistic action in the video over
long periods and hence perform topic spotting in video (without knowledge of the topics).

We demonstrated how our representation can be used for performing temporal seg-
mentation and then video summarisation, both crucial for building video analysis systems.
An unsupervised holistic analysis of large surveillances videos using low-level primitive
features facilitates a semi-automatic search process. Future work will consider how we
can automatically find and label repeating trajectory structures of particular interest. We
will also consider how to automatically choose the parameters and find the optimal seg-
ment granularity.
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(a) PETS
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(b) RAMP

D

(c) T4 (d) T2

Figure 4: The Video Scene Trajectories produced for the sequences shown in Figure 6.
The automatic breaks marked by a cross and manual breaks with a circle (PETS only).
Four interesting points are marked A, B, C and D as described in the text.

(a) (b) (c) (d) (e) (f)

Figure 5: The first three automatically detected segments/scenes from the PETS sequence
with alternative summaries: (a,b) the first and mid frame; (c) 100% of active pixels in the
scene; (d) the top 25% most active pixels; (e) the top 25% discriminative pixels; (f) the
discriminant D from Equation (8) used to compute (e). Our discriminative pixel approach
reduces the effect of noisy pixels resulting in a much clearer segment summary frame.



(a) (b)

(c) (d)

Figure 6: Illustrative frames from the sequences: (a) PETS; (b) RAMP; (c) T4; and (d)
T2. It is clear that static frames convey very little information about the actual content.

(a)

(b)

(c)

(d)

Figure 7: The video summaries produced for the sequences. In each case the pixel dis-
criminant D from Equation (8) is shown first followed by the segment summary frames.
Segments that correspond to points A, B, C and D in Figure 4 are marked.


