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Abstract

This paper presents an enhanced hypothesis verification strategy for 3D ob-
ject recognition. A new learning methodology is presented which integrates
the traditional dichotomic object-centred and appearance-based representa-
tions in computer vision giving improved hypothesis verification under iconic
matching. The “appearance” of a 3D object is learnt using an eigenspace rep-
resentation obtained as it is tracked through a scene. The feature represen-
tation implicitly models the background and the objects observed enabling
the segmentation of the objects from the background. The method is shown
to enhance model-based tracking, particularly in the presence of clutter and
occlusion, and to provide a basis for identification. The unified approach
is discussed in the context of the traffic surveillance domain. The approach
is demonstrated on real-world image sequences and compared to previous
(edge-based) iconic evaluation techniques.

Introduction

The aim of this work is to extend previous research on hypothesis verification, and to
improve the accuracy and robustness of pose refinement for object tracking. In recent
years, top-down hypothesis verification has received relatively little attention in the vision
literature. Notable exceptions are [2, 4, 10, 11]. The particular application domain for this
work is vehicle tracking [2, 4, 5, 11]. This domain poses significant problems for object
recognition: vehicles, for example, exhibit considerable within-class and between-class
appearance variations.

edge modelsi) exploit only a small part of the image structure, ardare ambiguous.
Moreover, previous exemplar-based learning schemes with partial likelihoods have per-
formed poorly in highly-variable natural scenes. Furthermore, in conventional model-
based tracking, the hypothesised model is verified independently in each frame of the
sequence. Therefore, it cannot accumulate knowledge of the object’'s appearance over
time. Such problems can be alleviated to some extent by extending the iconic evaluator
to be context sensitive. This can be done by including learnt information where “fea-
tures” are described by an “appearance-based model”. The proposed approach to iconic
matching is to adopt a unified geometric/appearance-based approach based on learning.

Traditionally, edge-based techniques have been employed for iconic evaluation but
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Figure 1: Appearance model. (a) and (b) illustrate sampling of the appearance model
representation for two vehicle surfaces, (c) shows the model features projected under a
hypothesised pose, and (d) the appearance model reconstruction using 20 eigenvectors.
In this particular example the facet tesselation does not include the wheels. In practice,
these features are used.

2 The approach

The approach taken is to exploit 3D geometric knowledge to segment specific image re-
gions corresponding to a variety of feature types. In this work, we concentrate on features
corresponding to vehicle surfaces. An important observation is that the modelled features
are more specific to individual vehicles and therefore best used during verification.

The appearance of a moving vehicle is learnt during the motion. The aim here is to
construct and refine (i.e. learn) the appearance of a vehicle and employ this representation
to constrain the matching in subsequent tracking (sections 3 and 4 below). The model of
the vehicle is projected into the image with hidden line removal. An appearance model
(see Section 2.1) is constructed for each model feature representing a set of 3D points
on the vehicle surface (this stage is performed offline). Each vehicle surface is treated
as an independent feature. This approach alidwasfeature to be sampled (with hidden
points removed) under full perspective projection, &pdn equal number of samples to
be obtained from each feature. The feature samples are used to learn the representation
(see Section 2.2).

2.1 Appearance model

An appearance model is constructed for each model surface. For each surface on the vehi-
cle a set off =~ 500) points are constructed on the surface. Currently this is done by using

a frontal parallel view of the surface and raster scanning the boundary box of the surface
in such a way as to generate the desired number of points. This technique is general and
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Figure 2: Occlusion handling. (a) shows a simple 2D case; (b) shows a projected model
overlaid onto an image vehicle; and (c) shows the best reconstruction for the vehicle's
occluded “front” feature using 20 eigenvectors.

does not impose topological relationships between the goirfthis step is performed
offline. During verification, a model is projected into the image under a hypothesised
pose. A check is then performed to determine whether the points are clipped by either
the vehicle or scene model. The set of 3D points is then projected into the image. Figure
1(b) illustrates the appearance model representation for two example features, Figure 1(c)
shows a vehicle model projected into the image and Figure 1(d) the same imaged vehicle
reconstructed using the appearance-based model for all visible features.

2.2 Learning the representation

In order to learn the global eigenspace representation for the background and vehicles
sample features are taken for both. The method empfaged sample the background
image using Monte Carlo techniques, and to sample instances of vehicles with correctly
fitted models. This stage is performed offline. Each feature is treated as a vector of dimen-
sionn by placing the grey-level image samples (with bilinear interpolation) in order. The
set of k normalised training feature vecto{s,, ., ...,r; } are represented by a lower-
dimensional subspace based on principal component analysis (PCA). The eigenvectors
(U) and eigenvalues) are efficiently computed using SVD. L&t (of dimensiom x k)

be the matrix of feature vector§, = DD”, X are the eigenvalues 6f, A o s? where

s; are the singular values d?. The rank ofC' is less than or equal tb so at most:
eigenvectors are computed. The ordered eigenvectors are complete, orthogonal and form
a basis that spans tlkedimensional training space. The input features are approximated

1Another technique using triangular facets which does impose a topological constraint is being considered.
2This is performed by projecting the vehicle model and sampling the appearance model for each visible
feature.
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by the firstw eigenvectors withw < k. In practice;n = 500 grey-level$ andw = 20
eigenvectors has shown to provide good reconstruction of input training features with
minimal residual error. An important property of the eigenspace representation which
is exploited in this work is that the closer the projections of two input features are in
eigenspace, the more highly correlated the original vectors. The distance in eigenspace is
an approximation of image cross-correlation. A global eigenspace is chosen so as to re-
construct both the background and vehicles (i.e. it is able to discriminate between them).
The appearance model we use is a point in the 20 dimensional eigenspace for each of the
model features.

2.3 Subspace updating

The eigenspace can reconstruct features present in the training set but the dimensionality
of the current basis feature space may not be sufficient to encode the observed feature.
This can be detected by looking at the reconstruction error. There are two cases in which
the underlying feature representation may need to be updated: i) when the appearance
of a previously unseen vehicle feature cannot be well approximated by the eigenspace,
and ii) a vehicle approaches the camera and features can be resolved in detail which may
not have been well represented by the training set. It is computationally impractical to
re-compute the SVD from scratch the complete set of training input features. Fortunately,
there has recently been research into fast and stable updating algorithms for SVD. In this
work we adopt the adaptive method of Manjunattal. [7] for SVD updating. For a new
featureA;,, the new SVD is computed 48,5,V 4;11] = U'S' V" whereU; andV;

are matrices whose columns are the firdeft- and right- eigenvectors respectively, and

>, the corresponding matrix of eigenvalues computed after obtainmirgasurements of

the feature. Full details are given in [7]. For the experiments reported in this paper the
dimensionality of the eigenspace is kept constant. In practice, this is done by reducing
the dimensionality of the space after each SVD update back to the originél STt

global eigenspace is updated on a per feature basis using a mean reconstruction error
criterion. In practice, highly-textured features (e.g. the front of the vehicle) require the
representation to be updated more often than other, more homogeneous features. The
advantage of updating on a per feature basis is that the feature space is only updated as
necessary to maintain the discriminatory ability of the feature and thus the robustness of
feature tracking. The same eigenspace is used for all features on one vehicle. In general,
a single eigenspace update is only required at the start of tracking which eliminates the
requirement to frequently change the underlying representation.

2.4 Occlusion handling

An advantage in adopting the eigenspace representation is that it can be used to recon-
struct the best approximation of a feature when there is missing data. This occurs when

there is occlusion. The missing data can be treated as free variables and the observed
data as fixed. The free variables are changed in order to minimise the distance between

3At present we only consider grey-level intensity information but the approach is easily extended to include
further contexual information (e.g. colour).

4the alternative approach would be to increase the dimensionality and map the observed data into the new
space.
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1. Compute projection coefficientgioj;) for feature vector; by
taking dot product of; with U;,1 < <w,1 < j <n.

2. REPEAT
for all pointsj = 1..n = 500 in the feature do
if the point; is occluded then
(a) reconstruction = E:i?o proj;U;
(b) sum += (reconstruction — vec;)?
(c) vec; = reconstruction
endif
endfor
Compute projection coefficientpio;;) for feature (as 1 above)

UNTIL (sum < thd)

Figure 3: Algorithm for feature reconstruction under occlusion.

then dimensional feature vector and its approximation inthdimensional eigenspace.

The problem then becomes one of determining the minimum distance between each un-
observed point in the occlusion subspace (OS) and the eigenspace (ES). Figure 2(a) il-
lustrates a simple 2D case. Here the eigenspace is the diagona} laerf and they

value is unobserved. The optimal valugyafan be obtained by projecting from the initial
point (zg, 0) onto the liney = x and then back onto the line (= z). This projection

is repeated until the minimum distance is found. In the example the two spaces intersect
but in general this is not the case. Figure 2(b) illustrates an example of occlusion and (c)
the best reconstruction for the “front” feature. Figure 3 illustrates the complete algorithm
for feature reconstruction under occlusion. Note that the quality of the reconstruction de-
pends upon the ability of the eigenspace to reconstruct the feature appearance as discussed
in Section 2.3.

3 Appearance matching

In this section we describe our approach to hypothesis verification given the object rep-
resentation introduced in earlier sections. For each model feature we have a point in the
20D eigenspace which acts as a prototype for the feature. The problem we now address is
how to match between this set of points in the eigenspace which represents the appearance
model and the set of points used for the image reconstruction in the same eigenspace.

3.1 Evaluation function

The approach is to adopt a probabilistic framework. The underlying assumption is that
projections of the same observed feature over several images can be modelled by a Gaus-
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Figure 4: Evaluation surfaces in po&&” space for an edge-based evaluator (a) and the
new appearance-based evaluator (b) for the same imaged vehicle and model projection.

sian density, and its response is given as

d(z) =eap™F (1)

wherez is the 20D feature vectatf, is the Gaussian mean agtlis the feature covari-
ance matrix. For initialisatior(;' is set to the covariance of the global eigenspace.

During tracking, the mean and covariance of the features in parameter space are up-
dated based on a Gaussian sampling in pose space centred on the final recovered pose
obtained using the simplex optimisation scheme. The mean and covariance is updated
using a weighting technique. This can be viewed as an ellipsoid of uncertainty in feature
location that collapses as the pose-parameter space mapping approximation improves. In
practice, it is not necessary to update the estimate of the distribution for every frame but
only when a significant change in vehicle orientation or depth occurs. The overall eval-
uation score (goodness-of-fit) for a projected model is the normalised sum of Gaussian
responses and is weighted by the number of observations of the feature (i.e. humber of
frames), the projected feature surface area and the amount of occlusion

eval = Z weight - d(x) 2

features

The evaluation can be viewed as the minimisation of the distance of each feature
from its prototype (i.e. Gaussian mean) in the eigenspace. The “smoothness” of the
evaluation surface is affected by i) the completeness of the representation and ii) the data
dimensionality. Figure 4 illustrates the evaluation surface for an edge-based evaluator
(a) and the new appearance-based evaluator (b) for the same imaged vehicle and model
projection. The vehicle was tracked through an image sequence with the vehicle pose
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| Edge-based | Appearance-based |
Cheaper Expensive
More stable at near-camera More sensitive to view catastrophigs
More sensitive to geometry Less sensitive to geometry
More prone to aliasing (multimodal) Unimodal evaluation surface
Less robust to occlusion More robust to occlusion
Cannot track far objects (poor resolution)  Track distant objects reliably

Table 1: Comparison of edge-based and appearance-based evaluation methods for vehicle
tracking.

refined at each frame to learn the sppearance. The model was then displaced from the
final recovered pose by fixed amounts ranging from -1m to 1m along both &mely

axes and from -25 to 25 degrees of rotation around the vertical axis. The edge-based
surface is multimodal with significant potential for a deterministic downhill optimisation
method (e.g. simplex) to get trapped in local maxima. The appearance-based evaluation
surface, however, is unimodal thus enabling faster, more reliable determination of the
maximum aposteriori (MAP) estimate of the correct vehicle pose.

3.2 Relation to previous work

The appearance-based paradigm in computer vision has recently been successfully em-
ployed for 3D object recognition by Nayar and Murase [9] amongst others. The main
problems with their approach are obtaining adequate segmentation of an object of inter-
est from the background, and taking account of occlusion. Furthermore, it is difficult to
see how an appearance modklnecan be used as an object representational scheme. It
seems impossible to acquire a full appearance model for all vehicle poses which could oc-
cur under perspective projection even with the ground-plane constraint (GPC). Mtindy

al. [8] performed an experimental comparison of appearance and geometric approaches.
The authors, in line with our own opinion, consider that object representation schemes
that complement each other are fertile ground for new research. More specifically, a
model should be more than geometry alone and therefore this suggests the combination
of the two representations. The most closely related work to ours is Blaak [1] on
EigenTracking and Cootet al. [3] on Active Shape Models (ASM’s). In [1] rigid and
articulated objects are tracked using a view-based representation. The main limitation is
that all processing is performed in the image-plane with no “notion” of 3D. This is also
the case for the morphable model approach of Jeted. [6]. In the PDM approach

of [3] each model point is associated with a model of expected image evidence: grey-
level models generated offline from sets of training examples. It is noted that the main
limitations of this approach are in application domains (e.g. outdoor scenes) where the
grey-level appearance can change significantly and unpredictably. Our approach learns
the object appearance online based upon experience.
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Figure 5: Examples of tracking using edge-based iconic matching (solid line in (c)) and
the appearance-based model evaluation scheme (brokenline in (c)). (a) illustrates a poorly
recovered vehicle pose using the edge-based method while (b) indicates the pose recov-
ered using the appearance-based approach for the same frame. The graph (d) illustrates
the Mahalanobis distance between the recovered pose and IEKF prediction for the edge-
based method (broken line) and appearance-based approach (solid line).
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Figure 6: Advantages of appearance-based tracking for (a) far-camera and (b) with sig-
nificant (40%) occlusion. The edge-based tracker fails for both cases.

4 Tracking

A number of experiments have been performed on different image sequences obtained
using a static camera. For each sequence, model pose initialisation was performed by eye
and either an edge-based evaluator [11] or the appearance-based evaluator used to refine
and track the vehicle through the sequence using an Iterated Extended Kalman Filter
(IEKF). Figures 5 and 6 illustrate two particular sequences of interest. In Figure 5, the
white hatchback enters the scene from the left and navigates a roundabout approaching
the camera. The vehicle undergoes significant change in depth and scale, and it is partially
occluded by the tree (modelled by it's silhouette) near the camera. The results of tracking
are illustrated in Figure 5 (the lower graph compares the Mahalanobis distance between
the recovered pose and filter prediction) which shows that the edge-based tracker (dashed
trajectory in upper figure) is much more affected by image clutter than the appearance-
based tracker (solid trajectory in upper figure). Note also that the edge-based tracker is
distracted by the occlusion as indicated in Figure 5(c).

Figure 6 illustrates two instances in which edge-based tracking fails (far-camera and
significant occlusion) but appearance-based tracking succeeds. A comparison of the pros
and cons of edge-based and appearance-based tracking is given in Table 1. An experiment
was also performed to compare the performance of integrated edge-based and appearance-
based tracking for pose refinement. However, it is not clear at the moment how the ev-
idence from independent trackers should be weighted and therefore the control problem
remains an open research issue.

4.1 Extension to deformable models

The methodology discussed applied so far assumes fixed rigid models. The methodology
presented easily extends to linear deformable PCA models [5]. The PCA model is con-
structed so that the surfaces remain planar under a change in the PCA parameters. This
means that there is a plane-to-plane homography for each surface. This homography maps
between the surface at the mean PCA parameters and the same surface at the current PCA
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parameters.

5 Conclusions and future work

This paper has introduced a new methodology which integrates the traditional dichotomic
object-centred and appearance-based representations, leading to improved hypothesis ver-
ification using iconic matching. In particular we have demonstrated the successful ap-
plication of appearance-based techniques to vehicle tracking, resulting in more reliable
model-based tracking particularly with respect to occlusion.

Future work aims to investigate whether maintaining a fixed topology of the points
across vehicle surfaces improves the ability of the system to perform reconstruction. At
present, the eigenspace has to allow for differences in the toplogy. A fixed topology may
allow a better representation of surface information. Additionally, we intend to investigate
surface lighting/reflectance models for normalising the input data prior to the eigenspace
analysis. Future work will also consider active pose refinement and initialisation issues in
the appearance-based paradigm.

References

[1] M. J. Black and A. D. Jepson, EigenTracking: Robust Matching and Tracking of Articulated
Objects Using a View-Based Representatlon, Journal of Computer Visionol. 26, No. 1,
pp 63-84, 1998.

[2] K. Brisdon, Evaluation and Verification of Model Instanc@spceedings Alvey Vision Con-
ference Cambridge, pp 33-37, 1987.

[3] E. C. Di Mauro, T. F. Cootes, C. J. Taylor and A. Lanitis, Active Shape Model Search using
Pairwise Geometric HistogramBroceedings (eds. R. Fisher and E. Trucco) British Machine
Vision Conferencel, pp 353-362, 1996.

[4] L. Du, G. D. Sullivan and K. D. Baker, On Evidence Assessment for Model-Based Recog-
nition, Proceedings (eds. D. Hogg and R. Boyle) Alvey Vision Confereincep 149-186,
1992.

[5] J. M. Ferryman, A. D. Worrall, G. D. Sullivan and K. D. Baker, A Generic Deformable Model
for Vehicle RecognitionProceedings 6th British Machine Vision Conferenpp, 127-136,
1995.

[6] M. Jones and T. Poggio, Multidimensional Morphable Mod@&gceedings 6th Int. Conf.
Computer VisionBombay, India, pp 683-688, 1998.

[7] B.S.Manjunath, S. Chandrasekaran and Y. F. Wang, An Eigenspace Update Algorithm for Im-
age AnalysisProceedings IEEE Int. Symposium on Computer Vis@oral Gables, Florida,
pp 551-556, 1995.

[8] J. Mundy et al, Experimental Comparison of Appearance and Geometric Model Based Recog-
nition, Lecture Notes in Computer Scien@é44, pp 247-269, 1996.

[9] H. Murase and S. K. Nayar, Visual Learning and Recognition of 3D Objects from Appearance,
Proceedings Int. Journal of Computer Visid, pp 5-24, 1995.

[10] C. Rothwell, The Importance of Reasoning about Occlusions during Hypothesis Verification
in Object RecognitionTechnical Report No. 2678\RIA Sophia-Antipolis, October 1995.

[11] G. D. Sullivan, Visual interpretation of known objects in constrained scePki, Trans.
R.Soc. Lon., B337, pp 361-370, 1992.



