
3D Shape Modelling through a Constrained
Estimation of a Bicubic B-spline Surface

Xinquan Shen and Michael Spann
School of Electronics and Electrical Engineering

The University of Birmingham, B15 2TT, UK
[shenx|spannm]@eee.bham.ac.uk

Abstract

This paper presents a new method to extract the 3D shape of objects from
3D gray level images using a bicubic B-spline surface model. Extraction of
object shape is achieved through a hierarchical surface fitting by exploiting
the multi-scale representation of the model. A strategy for converting the
surface estimation into curve estimations is devised. The model surface is
estimated by successively computing a set of cubic B-spline curves consisting
of a coordinate curve net defining the surface. A regularising component
is incorporated into the curve estimation to encourage the generation of an
orthogonal coordinate curve net, preventing the creation of unwanted creases.
Experimental results are presented for extracting the 3D shape of objects
from real 3D images.

1 Introduction

The interpretation of 3D images often needs the shape information of objects in the image.
A set of unmodelled 3D structures derived from local low level operations (e.g. edge
detection) [10] can hardly ever be directly used as shape information since 3D images
such as medical and geological images are often very noisy and objects in the image often
have a complex shape. An alternative way is to detect all the surface elements belonging
to the same object and integrating them into a shape model describing the object surface.

Basically, the mathematical form of the shape model describing the target object sur-
face determines the technique for fusing detected surface elements (e.g. 3D points) into
the model. Physically-based/active surface models [15, 3, 11] describe the object surface
through the equilibrium of internal and external forces acting on the model. The extraction
of the object surface is achieved through the deformation of the model by imposing ex-
ternal forces derived from the detected 3D positions on the target object surface to attract
the model surface towards the object surface. The stiffness of the model is determined
by material parameters which should be carefully chosen in order to obtain correct result.
The final result is often dependent on the initial position/shape of the model. Topologi-
cally adaptable models [6, 5, 2, 14] describe the object surface using a set of 3D points
defining a surface mesh (e.g. a triangular mesh). The surface of an object with arbi-
trary unknown topology can be estimated through a model deformation followed by a
re-parameterisation [6], an oriented dynamical motion of the defining points of the model
[14], or a surface evolution implemented by level set approaches [5, 2]. The method is
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often difficult in controlling the balance between the tracking of shape details and the
resistance to the noise effect. It is unlikely to obtain satisfactory result when the object
in the image presents a uncontinuous (broken) boundary due to the noise involved in the
imaging procedure.

In many real applications, the topology of objects to be modelled is knowna priori.
The operation of the shape estimation can thus be associated with a confined solution
space so that it only seeks an object shape with some expected properties (e.g. a closed
smooth surface). In the work reported in [13], a method is proposed for extracting the 3D
shape of objects from 3D gray level images. A bicubic B-spline surface is used as a shape
model with a scale determined by the number of control points defining the spline surface.
The extraction of the object shape is achieved through a hierarchical processing in which
the model at different scales is successively used to estimate the object surface. At each
scale level, the object surface is estimated by iteratively fitting the surface model to a set
of data points which are believed to be located on the boundary of the object and detected
by searching, within automatically controlled search radii, voxels with the strongest edge
response along directions normal to the model surface. However, the method is not im-
plemented in an efficient way. The resulting surface may contain creases produced due
to the irregularity of the coordinate curve net defining the surface (see Fig. 1(c)). These
creases are not responsible for any shape details, and local geometrical structures (e.g.
curvatures) in these areas are often not reliable.

In this paper, we present a substantial improvement to the work reported in [13].
By exploring the properties of bicubic B-spline surface, the computation of the surface
fitting at each iteration is implemented in an efficient way through estimating a set of
cubic B-spline curves which consists of a coordinate curve net defining the surface. A
constraint term is then introduced into the curve estimation to encourage the generation
of an orthogonal coordinate curve net and therefore to prevent the creation of unwanted
creases. The result is aC2 continuous surface approximating the object surface to be
modelled. Compared to the work reported in [13], the new method is more reliable in
shape estimation and produces better results.

2 Surface model

The object surfaceS(u; v) = [x(u; v) y(u; v) z(u; v)]T is assumed to be parametrically
described by a uniform bicubic B-spline surface expressed as follows [1]:

S(u; v) =
M�1X
i=0

N�1X
j=0

�ijbi(u)bj(v) (1)

where,bi(u) andbj(v) are B-spline basis functions of order 4 defined on parametersu

andv respectively,�ij = [Xij Yij Zij ]
T are control points defining the surface.

The number of control points used for defining the spline surface can be considered
as a scale associated with the model. Thus, a multi-scale representation of the model can
be obtained by choosingM andN as the function of a scale parameterk (k � 0). In our
implementation, the multi-scale of the model is defined as follows:

M(k) =M0 + ck

N(k) = N0 + ck
(2)
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where,M0 andN0 determine the model at the base scale (k = 0), andc is a constant
specifying the scale increment.

The type of the spline surface and boundary conditions associated with the model are
specified according to the prior information about the object surface. In our experiments,
the object surface is a closed surface topological to a sphere. The spline model is chosen
so that it is open in theu parameter and closed in thev parameter [1], and has the following
boundary conditions:

�0j = �00

�M�1;j = �M�1;0
; 1 � j � N � 1

The problem of the extraction of object shape now becomes the estimation of the
control points�ij from a set of image points which are considered to be located on the
object surface.

3 Model estimation

Given a set of data pointsS0

st, s = 0; 1; : : : ; P � 1, andt = 0; 1; : : : ; Q� 1, the control
points of the model can be estimated using the least squares method by minimising the
follow error:

Error=
P�1X
s=0

Q�1X
t=0



S0

st � S(us; vt)


2 (3)

P andQ are chosen to satisfy the conditions:P � M , andQ � N . It has been shown
[13] that the minimisation of (3) leads to a matrix equation involving matrices of order of
PQ�MN . Solving the control points�ij from this matrix equation requires a compu-
tational complexity ofO(3MNPQ). As the model scale increases, the computation of
the model becomes expensive.

3.1 A strategy of fast estimation

In this work, we present a fast method for estimating the model by exploring the fact
that the B-spline surface is bicubic. The surface estimation problem is converted into the
problem of curve estimation. Re-write (1) as

S(u; v) =

M�1X
i=0

bi(u)�i(v) (4)

where,

�i(v) = [xi(v) yi(v) zi(v)]
T

=

N�1X
j=0

bj(v)�ij (5)

For a fixed value of the parameterv, equation (4) describes a cubic B-spline curve (called
u-curve) defined by control points�i(v), 0 � i < M . From the given data setS0

st,
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0 � s < P and0 � t < Q, we compute the control points�i(vt) by minimising the
following error:

Error=
P�1X
s=0

kS0

st �

M�1X
i=0

bi(us)�i(vt)k
2 (6)

By vanishing the first order derivatives with respect to the�i(vt), and collecting the data
points and control points into vectors,�i(vt) can be computed by solving the following
matrix equation:

G =
�
BTB

�
�1

BTD (7)

whereB,D, andG have following forms:

B =

2
64

b0(u0) : : : bM�1(u0)
...

...
...

b0(uP�1) : : : bM�1(uP�1)

3
75 ;D =

2
664

S0T

0t
...

S0T

P�1;t

3
775 ;G =

2
64

�T0 (vt)
...

�TM�1(vt)

3
75

A correspondence between a data pointS0

st and the parameter valuesus andvt must be
established in order to compute the matrixB. A usual way to achieve this is to determine
theus andvt based on the chord length between two successive data points [1, 9]. For an
irregular data point net, the matrixBTB obtained from the determined parameter values
may be singular. To ensure a valid computation, data points are first adjusted by applying
a linear interpolation so that they are equally spaced inu andv [12]. Parameter values
corresponding to a data pointS0

st are then determined as follows:

us =
s

P � 1
� umax

vt =
t

Q� 1
� vmax

(8)

where,umax andvmax are the maximum parameter values which are uniquely determined
by the type of the spline surface [9].

Based on (8), the matrixBT is full ranked, and therefore,BTB is non-singular.
Also, for the fixed value ofM , N , andP , the matrix(BTB)�1BT is fixed. Noting that
the matrix(BTB)�1BT only needs to be computed once for estimating allQ u-curves,
the computational complexity of the equation (7) can be considered asO(3MP ). The
complexity for computing allQ u-curves leading toMQ control points1 �it, 0 � i < M

and0 � t < Q, isO(3MPQ).
On the other hand, equation (5) describes a cubic B-spline curve (calledv-curve)

defined by control points�ij , 0 � j < N . In a similar way to the estimation of u-curves,
theMN control points�ij , 0 � i < M and0 � j < N , can be estimated through
computingM v-curves using already computed points�it, 0 � i < M and0 � t < Q.
The complexity of this computation isO(3MNQ).

In summary, the B-spline surface model defined in (1) can be estimated from a set
of PQ data points by first estimatingQ u-curves each defined byM control points and
then estimatingM v-curves each defined byN control points. The complexity of this

1Since parameter valuesus andvt are uniquely determined by indicess andt, we simply note�i(vt) as
�it
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computation will beO(3MQ(N + P )). SinceN + P < NP , for N > 2 andP > 2,
this method for surface fitting is much more efficient than the previous one which has a
complexity ofO(3MNPQ).

3.2 Applying constraints

u-curves and v-curves form a curve net (calledcoordinate curve net[4]) on the model
surface. In the estimation method presented in the previous section, each u-curve and
v-curve is estimated independently, and no constraint is applied to the configuration of
the coordinate curve net. Although the result is aC2 continuous surface, the correspond-
ing coordinate curve net may be very irregular in some local area to form some creases
(see Fig. 1(c)) which are not responsible for any shape details. In this section, we further
modify the estimation method to prevent the creation of creases. The idea is to intro-
duce a constraint into the curve estimation to encourage the generation of an orthogonal
coordinate curve net.

For givenPQ data points, all u-curves described by (4) are first estimated using the
least squares method. Let�it = [xit yit zit]

T , 0 � i < M and0 � t < Q, be the obtained
MQ control points definingQ u-curves, and~ui, 0 � i < M , be the correspondingu pa-
rameter values determined in a similar fashion using (8). For each obtained u-curve, its
direction (unit tangent vector) can be computed. LetÆu(i) = [a

(t)
x (~ui) a

(t)
y (~ui) a

(t)
z (~ui)]

T

be the direction of thetth u-curve at the positionu = ~ui. According to the estimation
scheme presented in the previous section, the model surface can then be estimated by
computingM v-curves described by (5). To encourage the generation of an orthogo-
nal coordinate curve net, each v-curve (say,ith v-curve) is estimated by minimising the
following error:

Error=
Q�1X
t=0

k�it �

N�1X
j=0

�ijbj(vt)k
2 +

�

Q

Q�1X
t=0

h
ÆTu (i)Æv(t)

i2
(9)

where,� is a weighting parameter, and

Æv(t) =
N�1X
j=0

�ij
@bj(v)

@v

����
v=vt

(10)

Obviously,Æv(t) describes the direction of the v-curve at the positionv = vt. The second
term on the right of (9) counts the average of dot products between the direction of the
v-curve to be estimated and the directions of already computed u-curves. It acts as a
regularising component [7] in the minimisation operation to encourage the selection of a
v-curve which tends to be orthogonal to u-curves. The strength of the regularisation is
controlled by the weighting parameter�. When� = 0, the problem is reduced to the
standard least squares estimation.

By vanishing the first order derivatives with respect to�ij , 0 � j < N , and express-
ing the result using matrix notation,�ij can be computed by solving the following matrix
equation:

2
4
CT

CT

CT

3
5
2
4
x

y

z

3
5 =

0
@
2
4
CTC

CTC

CTC

3
5�



British Machine Vision Conference 281

�

Q

2
64

~C
T
W 1

~C ~C
T
W 2

~C ~C
T
W 3

~C

~C
T
W 2

~C ~C
T
W 4

~C ~C
T
W 5

~C

~C
T
W 3

~C ~C
T
W 5

~C ~C
T
W 6

~C

3
75

1
CA
2
4
X

Y

Z

3
5 (11)

where,

C =

2
64

b0(v0) : : : bN�1(v0)
...

...
...

b0(vQ�1) : : : bN�1(vQ�1)

3
75 ; ~C =

2
64

_b0(v0) : : : _bN�1(v0)
...

...
...

_b0(vQ�1) : : : _bN�1(vQ�1)

3
75

where_bj(vt) =
@bj(vt)

@v

����
v=vt

. x, y, andz areQ� 1 vectors, and

[xy z] = [�i0 �i1 : : : �i;Q�1]
T (12)

X, Y , andZ areN � 1 vectors, and

[XY Z] = [�i0�i1 : : : �i;N�1]
T (13)

W n, 1 � n � 6, areQ � Q diagonal matrices whose(t; t)th elements area(t)x
2
(~ui),

a
(t)
x (~ui)a

(t)
y (~ui), a

(t)
x (~ui)a

(t)
z (~ui), a

(t)
y

2
(~ui), a

(t)
y (~ui)a

(t)
z (~ui), anda(t)z

2
(~ui).

The model surface can then be estimated by computingM such v-curves. SinceCTC

is non-singular, the result of the term within the parenthesis on the right side of (11) is
a non-singular matrix of size3N � 3N . Computing the inverse of this matrix requires
O(27N3) computation [8]. Thus, the estimation of the v-curve requiresO(27N3+3NQ)
computations. Considering the computational complexity for estimating u-curves, the
complexity for estimating the surface isO(3M(9N3 +NQ+ PQ)).

It should be noted that an estimation scheme which first estimates v-curves and then
estimates u-curves can be similarly obtained.

4 Hierarchical shape estimation

Data points required for estimating object shape are detected by searching, within auto-
matically controlled search radii, voxels with the strongest edge response along directions
normal to the current model surface [13]. The response of the model surface to the data
points in the surface fitting is dominated by the number of control points defining the
model. A model with a small number of control points is inclined to have a stiff surface
in response to the data points, leading to an over-smoothed estimation. As the number
of control points increases, the “stiffness” of the model decreases, allowing a response to
local details.

Extraction of the object shape is achieved through a hierarchical surface fitting by
exploiting the multi-scale representation of the model. First, the model at the lowest scale
(k = 0) is used to achieve a coarse estimation of the object surface. This will prevent the
model surface from being tied to positions where the image is contaminated by noise and
produces strong edge responses. The result is then successively refined by increasing the
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Figure 1: Experiments on a128� 150� 201 3D seismic (variance filtered) data set. (a)
The initial model (the first row) and resultant model (the second row) overlapped to the
slices. (b) Two visualisations of the obtained shape model. (c) A shape model obtained
by choosing� = 0 in the shape estimation.

scale of the model until the desired scale level (k = K) is reached. At each scale, the
model is iteratively estimated until

M�1X
i=0

N�1X
j=0

k�
(n+1)
ij ��

(n)
ij k < � (14)

where,�(n)
ij are estimated control points from thenth iteration and� is a threshold.
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(a)

(b)

Figure 2: Experiments on a 3D medical image. (a) Initial model (first row) and resultant
model (second row) overlapped to X-Y slices of the image. (b) Visualisations of obtained
shape model.

5 Experimental results

Experiments have been applied to real 3D images. In all experiments, a model with scale
M(k) = 13+4k,N(k) = 14+4k, andK = 5 is used. The number of data points used for
estimating the surface is chosen asP (k) = 15+ 4k andQ(k) = 16+ 4k. The weighting
parameter� in (9) is chosen as5:0. Fig. 1 gives the result of an experiment applied to a
3D (128� 150� 201) seismic (variance filtered) data set. Only 4 X-Y slices containing
the object region of interest are shown. Fig. 1(a) shows the initial model (an ellipsoid)
and the resultant model overlapped to the slices. Fig 1(b) gives two visualisations of
the obtained shape model. Fig 1(c) shows the shape model obtained without applying
regularisation (i.e.� = 0) in the shape estimation. It can be seen that a crease is produced
due to the irregularity of coordinate curve net. Fig. 2 shows an experiment applied to a
3D medical image (visual human data). Fig. 2(a) shows the initial model and resultant
model overlapped to X-Y slices of the image. The obtained 3D shape model is shown in
Fig. 2(b). It can be seen that some parts of the object boundary have not been correctly
extracted. This is mainly due to the uneven sampling involved in the generation of the
image (the sampling ratio in X, Y, and Z coordinate is 1:1:4). Applying the method to the
interpolated image is currently under investigation. Fig. 3 gives the experimental result
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(a)

(b)

Figure 3: Experiments on a MRI brain image. (a) Estimated model overlapped to the
image. (b) Visualisations of obtained shape model.

applied to a MRI brain image. Fig. 3(a) shows the resultant model overlapped to the
image, and Fig. 3(b) shows the obtained shape model.

6 Conclusion

We have presented a new method for extracting the 3D shape of objects from 3D gray level
images using a bicubic B-spline surface model. Extraction of object shape is achieved
through a hierarchical surface fitting by exploiting the multi-scale representation of the
model. A strategy for converting the surface estimation into curve estimations is proposed
to achieve an efficient surface fitting and allow the incorporation of constraints applied to
the coordinate curve net defining the surface. A regularising component is introduced into
the curve estimation to encourage the generation of an orthogonal coordinate curve net
and therefore to prevent the creation of unwanted creases. Experiments have been applied
to real 3D images, and satisfactory results have been obtained.
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