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Abstract

Neurological studies are often concerned with identifying abnormalities in
brain structure affecting asymmetry between left and right hemispheres. This
paper presents techniques which allow measurement and characterisation of
differences between neuroanatomic structures due to variation in both shape
and receptor distribution. This provides a potentially powerful tool for iden-
tifying subtle pathological asymmetries. We propose a combination of ap-
pearance modelling and linear discriminant analysis and present preliminary
results of the technique applied to 2D hippocampal autoradiographs. We
also describe experiments testing the relative performance of variants of our
method to test assumptions about the nature of the analysis and the nature of
the data.

1 Introduction

Despite many studies, the anatomical characteristics of the major neuropsychiatric dis-
orders are still poorly understood. Furthermore, few rapid and sensitive techniques exist
for characterising morphological variation of neural structure with which pathology can
be identified. Presently, studies depend upon fairly coarse and simplistic measurements
such as anatomic volume or thickness, measures which are unable to register anything
other than the most gross of structural and neurochemical abnormalities. This may be
particularly inappropriate for complex 3D structures such as the hippocampus, a region
often associated with schizophrenic patholologies[1].A specific area of investigation is
concerned with the identification of pathological asymmetries between structures located
in either hemisphere of the brain. For example, studies suggest that normal asymmetries
of the brain are far less in schizophrenics, some imaging studies reporting loss or reversal
[2, 6], although other studies conflict with these results [7]. This paper describes a method
which can be used to accurately identify subtle asymmetry of neuroanatomy.

In order to confirm theories correlating psychological disorders with types of neuro-
logical pathology, it is required that both structure and neurochemical make-up of a region
can be determined. Analysing the distribution of neurotransmitters can often reveal vari-
ations which are indicative of altered neuronal development. To this end, our technique is
applicable to both shad receptor distributions made visible using autoradiography.
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In developing methods for identifying lateral asymmetries, a key issue is sensitivity. In
structurally simple regions, such as the cortex, comparisons may be quite straightforward;
methods such as the construction and averaging of depth profiles may suffice. However,
more complex regions are not amenable to such simple approaches. The hippocampus,
a highly concave and reentrant structure located in the temporal lobe, is an ideal test
subject for any technique which seeks to identify complex or subtle asymmetry. Whilst
a 3D analysis is the eventual aim of this project, we present preliminary results of our
technique applied to 2D postmortem autoradiographic sections of the hippocampus.

2 Materials and Methods
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Figure 1: Hippocampal Autoradigraph

The hippocampal tissue used as test data comes from five normal brains: subjects free
from a personal or family history of neurological or psychiatric disease. Both hemi-
spheres of hippocampal tissue were cryosectioRégm sections cut every00um.
Sections were stained with 8-hydroxy-2-(N,N-di-Nspyl-amino) tetralin ([3H]-8-OH-
DPAT), selectively labelling 5-HT1A receptors, which are located in restricted classes of
neuronal cells. The sections were then washed to remove unbound ligands, dried rapidly
and exposed to high resolution tritium sensitive x-ray film for 8-12 weeks. In the resulting
autoradiographs grey-level intensity represents receptor intensity. For the purpose of our
2D analysis, a single section located at a consistent anterior depth was selected from each
hippocampal hemisphere. Analysis was centred on the relatively stable parahippocampal
gyrus rather than the entire hippocampus, because of the intrinsic anterior-posterior vari-
ation of regions such as the dentate gyrus.
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Figure 2: Shape Modes : Combined hemisphere model
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Figure 3: Grey-level Mode : Combined hemisphere model

2.1 Point Distribution Models

Our method of identifying shape and grey-level asymmetries employs the point distribu-
tion model and appearance modelling techniques presented by Cootes et al[3]. The shape
information is captured by labelling the training images with consistent landmark points
(See Figure 1). Our training set was labelled under the guidance of a neurologist and with
the aid of a semi-automatic point planting software. Landmarks were typically curvature
extrema or distinctive regions of receptor intensity, supplemented by uniformly spaced
points between.

Each training image; labelled withp point coordinates can be described by2its
shape vectofz;o, yio, Ti1, Yi1 - - - Tip—1, Yip—1) " - It will be shown how the training set of
shape vectors can be used to identify shape differences between left and right hemisphere
hippocampi.

Grey-level information can also be expressed as a vector composed of the grey-level
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intensity of pixels making up the hippocampus. However, before these can be constructed,
variation due to shape must be eliminated. This is achieved by warping all training images
to the mean shape calculated from the training shape vectors. For each training image we
now have a grey-level vectdr;g, =1, ... Tim_1,)’ Wherem is the number of pixels
contained within the boundary of the mean shape. See related work by Lanitis et al[5].

Normal variation in the training set can be specified by performing principal com-
ponents analysis on the shape and grey-level vectors. This generates aneetesf of
variation: eigenvectors of the covariance matrix which span a shape or grey-level space
of dimension considerably smaller th2m (or m).

In addition to the data compaction, the modkaracterisghe principal ways in which
the training set varies. Figure 2 shows the first three shape modes of a model built from
hemispheres aboth left and right hemisphere hippocampi. The most significant mode
shows a lengthening of the collateral sulcus with an associated thinning of the parahip-
pocampal gyrus. The second most significant mode shows some vertical movement of the
right had side of the collateral sulcus. The third mode shows some bending and bowing
of both the parahippocampal gyrus and the collateral sulcus.

Figure 3 shows the most significant grey-level mode superimposed onto a mean hip-
pocampus shape. The variation described seems mainly to do with global increases in
receptor intensity.

Whilst these modes may contain some of the variation between left and right hemi-
sphere hippocampi, we cannot guarantee that they do so specifically and at the exclusion
of other variations. Principal component analysis identifies the variatitivin a single
training set. We require a technique which identifies varialtietweertwo training sets.

2.2 Linear Discriminant Analysis

We can think of each training example as a point in a space of high dimensionality. The
task of identifying shape and grey-level differences between left and right hemisphere
hippocampi can be viewed as the the task of separating two groups of points in this space.
Linear discriminant analysis is a statistical technique which seeks to maximise the differ-
ence between the two groups.

In figure 6, we see how the discriminant vector, represented by the dashedliae
vides an axis onto which the point distribution can be projected, maximally seperating the
two groups. On this axis we can perform scalar measurements of separation between the
groups. Furthermore, the discriminant vector characterises the group separation. Imagine
a point resting on the vector atmoving one way along the vector makes the point more
like the first group, moving it the other way makes the point more like the other group.

Given a training set of points divided into two groups, how do we calculate the coef-
ficients which ensure the discriminant function maximally separates the two groups?

A metric which describes the separation between two grey@sdz-, subject to an
arbitrary discriminant coefficient vecter is :

T T
V= a l'lT a” T2 (l)
a'Wa

wherez; andz; are vectors of dimensidp, representing the means of groups 1 and

2 respectively, andil’ the pooled within-class covariance matrijven by
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nx; andn,, denote the number of members in groups 1 and 2 respectividlyiy
simply the sum of the covariance matrices for groups 1 and 2.

So what does the metric described by equation 1 mean ? Thefafm-a” 75 simply
projects the means of both groups onto the discriminant vector formed by the coefficients
a, and calculates their difference. This is intuitive : as the distance between the groups
increases, so must the separation of their means, and so equation 1 is maximised. The
term a” Wa projects the pooled covariance matrix into a pooled variance value in the
1-D discriminant space. The smaller the variance of both groups (and hence the pooled
variance value), the less likely they will be to overlap and hence their separation will
increase. So as the variance decreases, so equation 1 is maximised.

Differentiating equation 1 with respect&oyieldsFishers Linear Discriminant Func-
tion:

a=cW Yz — %) 3)

where c is a scaling factor.
The discriminant coefficient vectaris a linear combination which maximally sepa-
rates groupr; from groupzs.(See ref[4]).

2.3 Paired Linear Discriminant Analysis

The definition of discriminant analysis provided above is phrased in terms of a separation
between two groups. However, in the case of our hippocampal asymmetries we cannot
be sure that such global distinctions between left and right hemispheres exist. In order to
gain some feeling for how asymmetries may be expressed in the training set, the data was
inspected in the following manner. Left and right hemisphere hippocampi were projected
into the parameter space provided by the modes of a principal component analysis. With
a reduced parameter space, it becomes possible to visualize the training set.

Figure 4 shows the hemispheres of the five brains projected onto the three most sig-
nificant modes of shape variation (covering 85 per cent of all training set variation).The
annotation of a point with the prefixindicates a hippocampus from the right hemisphere,
whilst | indicates a hippocampus from the left hemisphere. Points sharing the same sym-
bol type indicate hippocampi from the same brain. As can be seen from Figure 4 the
training set does not separate readily into distinct left and right hemisphere groups.

However, if we examine the training set purely on the basis of the most significant
mode (representing 55 per cent of total variation) we can see that although the groups do
not separate cleanly, the right hemisphere hippocampi hawmsistentlyhigher value
than their left hemisphere partners (See Figure 5). So although there is no significant
difference between thgroupof left hippocampi and thgroupof right hippocampi, there
may be consistent differences betwegetirs of hippocampi from the same brain.

We propose a form of discriminant analysis which seeks to maximise separation be-
tween agroup of pairsrather than gair of groups Figure 7 shows a distribution where a
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Figure 4: Training set projected into PCA space Figure 5. Training
set projected onto
most significant
mode

set of pairs are maximised in their separation by a discriminant vectéfe modify the
standard discriminant analysis scheme thus :

Let theith pair of points in the distribution of pairs be given by the: dimensional
vectors:

i1 = (171,172, ...,.Tm) T2 = (371,372, ...,xm) (4)

The difference between thith pair is

di = Ty — Ti2 (5)

and the mean difference is therefore

d=

S|

> d; (6)
i=1
We can define oypaired covariance matrigs

j— ﬁ:(di—a)(di—a)T (7

n—14
i=1
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Figure 6: Discriminant mode for two Figure 7: Discriminant mode for a paired
populations population

where the variances are expressed in terms of differences between pairs. Using the same
steps as in section 2.2, the set of coefficients which maximise paired separation are given
as:

a=cP7'd (8)

3 Experiment : Applying Discriminant Analysis to 2D
Hippocampal Data

Although the theory behind standard and paired discriminant analysis is well founded, the
assumption that hippocampal asymmetries are a paired rather than global phenomena is
untested. The first task then, is to assess to what extent paired linear discriminant analysis
produces better separations in hippocampal sections than standard discriminant analysis.

A second issue is what parameter space to perform the analysis on. Using principal
component analysis, the dimensionality of the training vectors can be drastically reduced.
With this in mind, comparisons need to be made to make clear whether the computa-
tional savings achieved by performing discriminant analysis on the reduced space are
outweighed by any effects this may have on the detection of separations.

3.1 Experimental Procedure

The 10 hippocampal sections (5 left hemisphere and 5 right) were subject to discriminant
analysis of shape and grey-level under the following conditions:

¢ Paired Discriminant Analysis : maximisation of separation between paired obser-
vations of datapr Standard Discriminant Analysis : maximisation of separation
between two groups of data.

e Reduced b-space Vectors training data composed of b-space vectors formed in
construction of shape and grey-level models of combined hemisphere hippocampi
(see section 2.19r Sample Space Vectorstraining data composed of vectors con-
taining the coordinates of landmark points describing the hippocampal structure, or
vectors of pixel grey-level values describing receptor distribution.
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Each experiment will yield a set of discriminant coefficients, each of which allow the
training set to be projected onto a one dimensional discriminant mode. Comparison of the
separations provided by the different modes can then be performed. The metric proposed
to allow quantitative comparison of separations is the t-test statistic. Although this test
requires normality, which is certainly not guaranteed using our small data set, we only

require a measure which gives an indication of télkative significance of separations
over the different conditions.

4 Results

The t-test statistics and corresponding significance levels for the four different experimen-
tal conditions are presented in tables 1 and 2 . It is clear that paired discriminant analysis
is providing a better description of the separation between the groups, particularly in the
case of grey-level differences. Figures 8 and 9 provide visualisations of the shape and
grey-level changes which occur along the axis of greatest separation between left and
right hemispheres. In these visualisations the centre hippocampal section can be regarded
as a section which is neutral of laterality, being an average of left and right hemispheres.
Moving one way along the mode, makes the section more "leftish” and the other way
more “rightish”. The limit set for the variation in these visualisationy s where! is the
average separation between paired hemispheres.

—% (left hemisphere) — Mean Shape — +§ (right hemisphere)
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Figure 8: Paired discriminant mode for shape

—£ (left hemisphere)  « Mean Grey-level — +4 (right hemisphere)

Figure 9: Paired discriminant mode for grey-level intensity

The visualisations demonstrate the the form of left-right hippocampal asymmetry.
Left hemisphere hippocampi have longer and more vertically aligned collateral sulci than
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Condition Num. sampleg Dimensions| t-value | Sig. level
Normal LDA (unpaired)
Reduced b-space 10 9 1.22 74.3%
Full sample space 10 102 2.99 98.3%
Paired LDA
Reduced b-space 5 9 2.35 92.2%
Full sample space 5 102 35.46 | > 99.9%

Table 1: Shape asymmetry significance levels over four experimental conditions

Condition Num. sampleg Dimensions| t-value | Sig. level
Normal LDA (unpaired)
Reduced b-space 10 9 0.03 2.2%
Full sample space 10 40186 0.19 14.9%
Paired LDA
Reduced b-space 5 9 3.56 97.6%
Full sample space 5 40186 4.39 98.8%

Table 2: Grey-level asymmetry significance sevels over four experimental conditions

right hemisphere hippocampi, whose collateral sulci are stumpy and often slanted in ori-
entation. In addition, left hemisphere hippocampi have slightly straighter parahippocam-
pal gyri than right hemisphere hippocampi, whose gyri are more bowed. (See Fig 1 for
anatomical terms).

The grey-level discriminant mode is more difficult to interpret, although it can be said
that most of the left/right asymmetry takes place in the top left hand corner, where the
parahippocampal gyrus bends into the uncal sulcus. Although it is difficult to discern
from these diagrams, animations show that right hemisphere hippocampi have a greater
profusion of striations in the parahippocampal gyrus.

5 Discussion

The difference between left and right hemisphere populations is small in the context of
natural variability amongst individuals. The paired discriminant analysis seeks to find a
consistentmode of separation. The fact that a better separation is found by the paired
analysis indicates that while the left and right populations might overlap in their shape
and grey-level, the shifts between them are consistent. The paired discriminant analysis
is clearly a better way of identifying a discriminant vector for groups which are paired.

The second issue is the performance of both discriminant techniques when applied to
the model-space representation of the data set. The significance of the separations is not
as great as that gained when using the full sample space. There are two points regarding
this result. Firstly, the significance values for full parameter space seem suspiciously high.
This is due to the fact that we are trying to locate a vector which separates only 10 pieces
of data in a space of very high dimensionality: it is possible for many such vectors to be
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located. Results must therefore be regarded cautiously. Secondly, the use of a reduced
parameter space results in lower separations, possibly truncating some of the asymmetry
we are hoping to identify. It is possible, and indeed even quite likely, that some of the
asymmetries are quite small, and so are subsequently removed by the dimensional reduc-
tion taking place in the principal component analysis. However, the fact that significant
separations are still detectable under such a reduction offers encouragement.

6 Summary

We have demonstrated that linear discriminant analysis, coupled with accurate landmark-
ing of structure, provides a potentially powerful way of generating quantitative and spe-
cific descriptions of lateral asymmetries in hippocampal sections, both in shape and re-
ceptor distribution. We have presented a modified discriminant analysis scheme which
detects paired asymmetries. The results suggest that whilst left-right shape asymmetries
exist, and may be detected by considering the two hemispheres as guairpd;asym-
metries due to shapand receptor distribution seem to be more pronounced on examining
the paireddifferences.

At a particular level of the parahippocampal gyrus, we have identified specific lateral
asymmetries. The significance of the measurements needs to be regarded with caution
given the small data set available, but the initial result allows us to form the hypothesis
that similar differences will be detected by a 3D study using the more substantial data set
which is currently being collected for this project.
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