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Abstract

A working face recognition system requires the ability to represent facial im-
ages in such a way that permits efficient and accurate processing. The human
visual system effectively stores, recognises and classifies familiar facial im-
ages under a wide variety of viewing conditions, albeit with various degrees
of accuracy. We describe a system which automatically determines a rep-
resentation for pose-varying facial images - a representation with inherent
classification properties, an ability to generalise from one viewing condition
to another, and which uses fast computational procedures.

1 Introduction

Representing a human face under a large range of viewing conditions and being able
to recognise images of familiar people in these conditions is one of the more remark-
able abilities of the human cognitive system. Whilst the relatively simple procedure of
matching frontal face images underconsistentviewing conditions has been implemented
and commercially exploited [17, 23], we have yet to see a system capable of recognising
faces over significant variation1 in viewing conditions and generalising to novel condi-
tions. The technique described in this paper demonstrates a system which attempts both
of these difficult tasks for an arbitrary set of viewing conditions. We provide an automatic
method for constructing efficient representations of faces - for example over90o head
rotation is described by a one hundred-dimensional vector. Within this representation we
utilise our prior experience of known behaviours to facilitate the recognition of faces in
novel viewing conditions. Our system demonstrates the use of this approach for pose-
varying faces and we show that, having previously only seen one image of an individual,
we can then generalise to poses as far as90o away from the training pose with 50% ac-
curacy. The general purpose method described here is capable of learning representations
of any object set in any previously experienced viewing conditions and of relating object
appearance in one condition to another.

Machine vision techniques are often inspired by human visual processes and one of
the key issues for recognition algorithms is that ofrepresentation- how do we represent
objects (and faces) in order to be able to recognise them under a large variety of viewing

1For instance [9] in which the pose range is limited to�20o causing no occlusion of features.

BMVC 1998 doi:10.5244/C.12.7



British Machine Vision Conference 65

conditions? Two competing theories concerning the nature of object and face represen-
tation in the brain can be simply described as thethree dimensional (3D) approachand
the two dimensional (2D) approach.Essentially, does the human visual system (HVS)
attempt to recover the 3D information from a single (or multiple) image (e.g. [22]) and
use this information to generalise to novel viewing conditions or does the HVS (in some
manner) store a number of 2D images (for instance [20]), under various conditions, and in-
terpolate between and extrapolate beyond these conditions in order to generalise to novel
views? Recently there have been several experiments [14, 8, 1, 18] which have supported
the (class-based) 2D approach rather than the more traditional 3D approach. This pa-
per provides an automatic, view based, 2D approach for face representation and uses the
representation itself to determine characteristic appearance changes for new individuals.

Frontal face recognition systems based upon the principal component analysis tech-
niques [19, 12] or the Gabor wavelet approach (dynamic link architecture) [7, 23] have
been shown to exhibit good performance characteristics when the viewing conditions
between the training and testing phases remain relatively constant. However their per-
formance is usually severely degraded when illumination or pose changes become sig-
nificant. We are primarily concerned here with learning an efficient, yet characteristic,
representation of human faces under different viewing conditions. Using this represen-
tation we can then attempt recognition and classification. We are also interested in the
condition-dependent task performance within the representation. Furthermore, what we
consider to be recognition isalwaysin a viewing condition considerably different from
the training view (by as much as a90o pose change in the experiments reported here) and
our representation facilitates this generalisation ability.

The remainder of this paper is organised as follows: section 2 describes our method
of generalisation and recognition within an appropriate subspace and section 3 describes
the manner in which we automate the construction of view-based representations. Our
experimental results are described in section 4 where we show that this automatically
constructed representation performs equivalently to a (painstakingly formed) manual one.
Finally, in section 5 we describe how such representations may be used for classifying
faces through various attributes.

2 Subspace Generalisation

In our experiments, we employ the pose varying eigenspace representation used by Murase
and Nayar [15] for object recognition and McKenna et al [11] for face recognition. We
do not attempt to construct an optimal eigenspace for recognition, rather we use a small
but representative sample of our facial image set to form an eigenspace. Typically we
sample less than one hundred images from an image set of over 500. The eigenspace is
constructed, as usual, from the covariance matrix of the sampled images - resulting in
a number of image-sized eigenvectors. We eliminate all but the largest ten eigenvectors
which are used for the subsequent analysis. We have shown previously that the perfor-
mance of systems based on pose-varying eigenspaces with dimensionality greater than
ten is effectively constant [3]. After the image processing stage, our database of faces
consists of a number of individuals, in a number of poses, each image being represented
as a single point in a 10D subspace.

The generalisation from single views (and hence single points in the subspace) to
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novel views requires the ability to capture the manner in which a subject moves through
the eigenspace as they undergo the viewing condition change. Essentially we require
some prior experience of similar transformations and our ability to generalise to novel
individuals is dependent upon the extent of that experience. For this we utilise a Radial
Basis Function (RBF) Network [13] - a type of neural network containing one hidden
layer of Gaussian activation nodes fully connected by a set of linear weights to the output
layer. Radial Basis functions are trained in three stages; first we select the coordinates
of the hidden unit centers, next we select the width of the Gaussian activation functions -
centered at the positions chosen in stage one, finally we calculate the weights connecting
the hidden and output nodes - as this is a linear summation it can be performed by a matrix
inversion.

For our face database we train a RBF network on a set of single images - represented
by their 10D vectors in the eigenspace - to predict the remainingN poses of the same
individuals in this space. Thus a 10D input vector producesN�10D output vectors cor-
responding to that individuals’ representation at allN poses in the eigenspace - referred
to asa virtual eigensignature[4].

Formally, the recognition of faces from previously unseen views requires a function
� which maps a real pointp to a virtual eigensignature� , i.e�(p) = �; where� con-
sist of N pointsfq1; : : : ; qNg wherefp; q1:::Ng 2 <10 - points in the 10D eigenspace.
� here is the RBF network described earlier. Recognition of a novel view consists of
calculating the eigenvalues of a test image to give a pointpt in the eigenspace. This is
then used to find a minimum distance betweenpt andqin - whereqin is then-th mem-
ber of eigensignaturei (�i). Several distance functions are possible, we have investi-
gated the Euclidean distance, the Mahalanobis distance [2] (where each dimension in the
eigenspace is weighted according to the magnitude of the corresponding eigenvector) and
more sophisticated measures. All have been found to perform similarly and in this paper
we report only on the use of the Euclidean distance.

For a large database we have many�i and each�i 2 <10N such that an exhaustive
search in 10N dimensional space can require extensive computation. Thus we can restrict
the search space of the recognition by attempting to classify according to which pose we
think the target belongs to (qn) or by using a data structuring technique such as that of
Nene and Nayar [16].

3 Representation Building

As previously mentioned our chosen representation for faces consists of a series of ten
dimensional points in an eigenspaceq1;:::;N . These points cover the range of viewing
conditions from which we wish to attempt recognition. Given a small number of people
and conditions it is possible, but time-consuming, to manually select the training data
(qn) for each individual in the training set. This approach restricts the applicability of
the method. A more useful and insightful approach would be to automatically construct
a condition set, given our experience of facial images and then to re-sample the database
according to this condition set.

Our method of automatic representation building employs the K-means clustering
algorithm of MacQueen [10]. Here we use our experience of facial images to determine
local clusters of data in the eigenspace. These clusters then form the basis centers from
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Figure 1: K-means center locations (with manual averages)

which we chooseqn. We take a sequence of images for each individual and only retain
those images which are nearest to each basis center. Thus we form a real eigensignature
for each individual in the training set.

The K-means clustering was applied algorithm on our database of 564 images of 20
individuals. In order to compare the performance of this automatic method with our
previous manually-formed one [4] ten basis centers were chosen. As this is a partially
stochastic approach we applied the K-means algorithm several times in order to form a
more accurate picture of the system performance. Effectively we are forming a different
representation for each run of the K-means algorithm and so establishing the recognition
characteristics of the technique for a large number of cluster locations. Figure 1 illustrates
the calculated K-means centers for one run. For illustration purposes we show only the
first two eigenvalues of each image and K-means center. For comparison the average
points of each person, at each pose, in the manually-formed representation used in [4] is
shown. It can be seen clearly that the clusters represent more of the data in the sample
than the manual averages - but that the characteristic nature of the K-means centers may
be more difficult to obtain with the RBFN due to the increased distance between adjacent
centers.

It has often proved useful to visually examine the eigenvectors in such experiments
(e.g. [21]) indeed theface-likenature of the eigenvectors has led to them being called
eigen-faces[19]. Figure 2 shows the image reconstruction of these points in the first ten
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Figure 2: K-Means reconstructed centers

eigenvectors. Clearly these images cover the range of poses represented in our database.
Interestingly, there are apparent features such as the presence of glasses (eigenvectors 2
and 7) and the presence of a beard (eigenvector 10). It is these apparent features that
have led us to use the automatically formed representation for classification of faces by
features. These experiments are described in section 5.

4 Experimental Observations

Our previous face recognition experiments [4], which employed the manually formed rep-
resentation described, demonstrated the use of thevirtual eigensignaturesformed by the
RBF-based framework described in section 2 for unfamiliar view face recognition. In [4],
we examined both the training and testing pose dependent nature of the system. Views
intermediate to the frontal and profile views were superior views for both training and test-
ing. In [5], we proposed that this property is a direct consequence of the distance between
individuals at these intermediate poses and the relatively smaller distance between them
at profile and frontal views. Section 4.1 will establish the performance characteristics of
the K-means algorithm for determining representations whilst section 4.2 will analyse the
distance relationships of such representations to see if they support the proposed relative
distance theory.

4.1 Recognition

In [4] we determined the performance characteristics for unfamiliar view face recognition
of the RBF-based approach. In summary we found that our manually formed represen-
tation could generalise to novel views from a single training image with a mean correct
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Figure 3: K-Means vs Manual recognition ratios

recognition ratio of0:4635 (� = 0:0747). This result is surprising when one considers
the actual task and how we achieve these results: namely that all we are using is a RBF
network trained to capture the characteristic behaviour of a set of individuals as they rotate
through an eigenspace - and use this network to predict how a previously unseen person
would undergo the same change. We are capturing some of the information available
in such a characteristic process - how much more is extractable within this and similar
frameworks is the subject of ongoing research.

According the the scheme described in section 3 the K-means algorithm was applied
100 times on our database of 564 images this produces 100 sets of cluster locations in the
eigenspace. Each set was sorted according to its first eigenvalue and these locations used
to determine the poses to store from each sequence of the 20 individuals in the database.
The RBF network was trained on every combination of 19 from 20 of the individuals to
achieve the characteristic learning and the network was then used to characterise the re-
maining individual from a single pose. The procedure was repeated for each pose. Figure
3 displays the mean recognition ratios and standard error for each of the training poses.
For comparison we show the performance characteristic of the manual representation for
each training pose. The K-means algorithm achieves a mean correct recognition rate of
0:4556 (� = 0:0050) which is equivalent to the manual representation. As the K-means
algorithm is designed to cover the data evenly, we see little pose dependency in the K-
means representations(0:5%) compared with the pose dependent deviation of the manual
one (7:5%). The theinter-setstandard deviation (i.e. the mean pose-varying standard
deviation for each set of cluster locations) was6:6% - which is similar to the manual
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Measure Correlation

Neighbour distance -0.11 (�0:31)
Mean cluster separation 0.02 (�0:36)

Cluster width -0.16 (�0:34)
Cluster membership -0.21 (�0:32)

Table 1: Cluster property correlations

representation. From this we can conclude the each individual choice of representations
may exhibit pose-dependent behaviour but, on average, there is no intrinsic dependency
in such representations.

4.2 Distance Relationships

As discussed earlier, we believe that recognition ratios in the eigenspace are dependent
upon the distance between faces at the test point. The K-means algorithm returns a statis-
tical description of the images in the database in the form of the locations and widths of
clusters (in the eigenspace) of data within the set. Using such measures we can examine
the relationship between the cluster properties and the performance of the system when
trained at that cluster. As before, the K-means algorithm was ran 100 times and, for each
run, we determined four measures for each cluster:

� The mean distance to each neighbouring cluster,

� The mean distance to all other clusters,

� The width of each cluster,

� The number of training points which are closest to each cluster.

Table 4.2 shows the mean correlation of the 100 iterations for these four measures
against the recognition ratios. The figures in brackets are the standard deviations for
each measure. The lack of a strong correlation between any of these factors leads us to
conclude that there is no support for the theory that the generalisation ability of the RBF
networks is dependent upon the distance between each of the nodes, nor upon the relative
importance of each cluster in the representation. The large standard deviations indicate
that there are occasionally spurious large correlations for each of the measures.

5 Classification Experiments

As noted in section 3 there are apparent features associated with the eigenvectors of each
cluster location determined with the K-means algorithm. In order to determine the rela-
tionship between the features of the faces and the locations of the cluster centers we classi-
fied all of the faces in our database manually by five attributes:Hair (dark/light), Glasses
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(present/absent), Beard (present/absent), Skin (Dark/Light) and Sex (Male/Female).Each
of the former cases were assigned a value of+1 and the latter�1. 2

We again trained a RBF network on every combination of 19 individuals from 20 to
predict the classification of each of the 5 attributes. For the input vector we used the vector
between the pose for the individual and the cluster location. We then tested the network
on the remaining individual. This was performed for each pose in the eigensignature.
Figure 4 shows the mean performance per pose number of ten applications of the K-means
algorithm. Note that there is effectively no pose dependency. Overall we see that that
our correct classification rate is0:6950 indicating that there is classification information
available in such representations as there is for identity.
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Figure 4: Classification Performance vs Training Pose

6 Discussion and Conclusion

We have introduced a means of automatically determining a view-based 2D represen-
tation of 3D objects and illustrated its use for pose-varying face recognition. We have
shown that it is possible to extract identity-specific information from the characteristic
nature of the representation and to extract classifiable information from the properties
of the representation. The use of the K-means algorithm is perhaps a poor choice due
to the inconsistent nature of its results. Future work will investigate more sophisticated
approaches such as self organising maps [6]. The ability to generalise to novel views
within these representations is also dependent upon the characteristics of such representa-
tions - the chosen discrete point model possibly represents the simplest approach and the

2There were 17 with dark hair, 8 wearing glasses, 4 with beards, 1 with dark skin, and 16 males.
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recognition performance will be improved by a more comprehensive model.
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