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Abstract

This paper describes how corner detection can be realised using a new fea-
ture representation that has recently been successfully exploited for edge and
symmetry detection. The feature representation based on an magneto-static
analogy. The idea is to compute a vector potential by appealing to an analogy
in which the Canny edge-map is regarded as an elementary current density
residing on the image plane. In our previous work we demonstrated that
edges are the local maxima of the vector potential while points of symmetry
correspond to the local minimum. In this paper we demonstrate that cor-
ners are located at the saddle points of the magnitude of the vector potential.
These points correspond to the intersections of saddle-ridge and saddle-valley
structures, i.e. to junctions of the edge and symmetry lines. We describe a
template-based method for locating the saddle-points. This involves perform-
ing a non-minimum suppression test in the direction of the vector potential
and a non-maximum suppression test in the orthogonal direction. Experi-
mental results of both synthetic and real images are given. Comparisons of
the method in different scales and with the SUSAN corner detector are also
given.

1 Introduction
Corners are important dominant points in digital images. In many computer vision tasks,
such as image registration, image matching [4], object recognition [15, 10] and motion
analysis[7], accurate corner detection is essential. Broadly speaking, there are two corner-
detection strategies adopted in literature. The first of these is based on the analysis of
pre-segmented contours, while the second is based on the differential analysis of the raw
gray-scale image. However, in both cases it is the rate of change of contour angle that is
used to characterise corner features.

In the case of boundary-based corner detection. from presegmented contours there
are three processing steps. Firstly, the image is pre-segmented. Secondly, boundaries of
the object in the image are extracted and chain coded. Finally, algorithms are developed
to detect corners along the boundaries. According to the contour-based approach, corners
are defined as the intersection points or junction points between straight line segments
[25]. Several authors have used chain codes to provide a digital characterisation of corners
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[8, 2, 13, 20, 1]. A review is provided by Liu [14]. The main weakness of the contour-
based method of corner detection is the availability of a reliable image segmentation.

Corners in gray-scale images are characterised by using the second-derivatives of the
image luminance function [23]. Although this method does not require pre-segmented im-
age contours, it is sensitive to the noise amplification effects of the second-derivative op-
erators. Gray-scale corner detection algorithms can be divided into two groups, Template-
based corner detector [19, 16] detect the similarity between a given template of a specific
angle for each image sub-window. Because multiple orientation templates are used, the
technique is computationally expensive. Gradient-based corner detector [12, 21, 6, 18,
24], on the other hand, relies on measuring the curvature of an edge that passes through
a neighbourhood. The strength of the corner response depends on both the edge strength
and the rate of change of edge direction. Gradient-based corner detection techniques are
more likely to respond to noise than their contour-based counterparts, and often perform
quite poorly.

Our aim in this paper is to present a new corner detection method which exploits
some of the best features of the template based and the curvature-based methods. In
particular, we aim to detect corners via direct topographic analysis. Unlike Haralick’s
topographic primal sketch[11] which is based on the topography of gray-scale features,
we analyse the topographic structure of the vector potential representation. Corners are
located where saddle points occur. We commence from an image representation which
has already been shown to provide a convenient topographic representation for edge and
symmetry features [5]. The representation is based on a magneto-static analogy in which
the raw Canny edge-map is responsible for generating a current density which resides on
the image plane. The key idea is to compute the associated magnetic potential at various
heights above the image plane. Local maxima (i.e. ridges) of the magnitude of the vector
potential correspond to edges while the local minima (i.e. ravines) are symmetry lines.
According to this topographic picture, corners are saddle-points of the magnitude of the
vector potential.

With the topographic representation to hand, the main practical problem that confronts
us is the localisation of the saddle-points. This is more difficult than localising ridges
and ravines since we are concerned with identifying point features rather than contour
features. In the case of ridges and ravines we can exploit constraints on compatible con-
tinuity or directionality. In the case of saddle points the constraints are more subtle, since
we are seeking locations which are consistent with being the junctions between saddle-
ridges and saddle-valleys. Based on this observation we develop topographic tests for the
consistent saddle-structure in the vector potential. This is effectively a template based
method. We search for consistent valley structure in the direction of the vector potential
and consistent ridge structure in the orthogonal direction. In other words, the directional
template characterise local saddle-structure as the intersection of ridge (i.e. edge) and
ravine (i.e. symmetry) structures. Moreover, computation is simplified since the template
is fixed to be in the direction of the vector-potential. This is a threshold-free operation.
The final corner selection is based on thresholding the local change in orientation of the
vector potential.
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2 Image representation using vector potential
In this section, we review the feature-representation recently reported by Cross and Han-
cock [5]. The starting point is to compute the Canny edge map[3]. Accordingly, we
commence by convolving the raw imageI with a Gaussian kernel of width�. The kernel
takes the following form

G�(x; y) =
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With the filtered image to hand, the Canny edge map is recovered by computing the
gradient E

¯
= rG� � I

In order to compute a vector field representation of the edge-map, we will need to
introduce an auxiliaryz dimension to the originalx � y co-ordinate system of the plane
image. In this augmented co-ordinate system, the components of the edge-map are con-
fined to the image plane. In other words, the edge-vector at the point(x; y; 0) on the input
image plane is given by
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In order to pursue our magneto-static analogy we would like to interpret the raw edge
responses as elementary currents which flow around the boundaries and give rise to a
vector potential. The elementary current-vector at the point(x; y; 0) on the input image
plane is defined to be

A
¯
(x; y; z) = �

Z
V 0
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3 Differential Operators
In order to develop the appropriate differential operators for feature characterisation from
the vector-potential we have appealed to the geometry of the associated magnetic field.
According to magneto-statics the magnetic field is the curl of the vector potential. It
is important to stress that because it is less computationally tractable than the vector-
potential, the magnetic field is never used directly in our image representation. The role of
the magnetic field is to provide an auxiliary representation. The geometry of the magnetic
field allows us to understand the differential structure of the vector-potential.

According to our representation of image structure, symmetry lines follow the lo-
cal minima of the vector-potential. In other words, they connect image points where
there is strong cancellation edge tangent vectors associated with symmetrically placed
object boundaries. By contrast, edge contours follow the local maxima of the vector po-
tential. According to our representation, the edge lines connect points where there is
strong directional re-enforcement between edge tangent-vectors. Symmetry lines can be
interpreted as locations where the magnetic field is perpendicular to the sampling image
plane. Edges are locations where field lines are tangential to the relevant sampling plane.
When viewed from perspective of the differential structure of the vector potential, sym-
metry lines are locations where the component of the curl in the image plane vanishes,
i.e. ẑ ^ r ^ A

¯
(x; y; z) = 0; edges are locations where the transverse component of the

divergence vanishes, i.e.r:(ẑ ^ A
¯
(x; y; z)) = 0.
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Corners, or points of locally maximum boundary curvature, can be viewed as edge-
locations where there is a local symmetry axis associated with a rapid change in boundary
direction. When viewed from the perspective of our image representation, corners there-
fore correspond to locations where both the edge and symmetry conditions are simultane-
ously satisfied. From a topographic viewpoint, corners are located where boundary lines
and symmetry lines meet. In other words, we are interested in locating points where there
is a local maximum of the magnitude of the vector potential in one direction and a local
minimum in the orthogonal direction. As a result corner detection can be treated as saddle
point detection.

4 Topographic Representation
In the previous section, we established that corners are saddle-points in the magnitude of
the vector-potential. We therefore focus on the analysis of the scalar quantity

g(x; y)z = jA
¯
(x; y; z)j (4)

The topographic structure of the vector potential can be characterised up to second-order
using the gradientrg and Hessian matrixHg .

The Gaussian curvatureH and mean curvatureK can be computed as follows

H =
det(rrT g)

(1 + krgk2)2
(5)

K =
1

2
r �

 
rgp

1 + krgk2

!
(6)

wherer is the 2-D gradient operator,rrT is the Hessian matrix operator and(r�)
is the divergence operator of vector calculus. Therefore, the Gaussian curvature and the
mean curvature can computed directly using first and second partial derivatives.

Class Symbol K H Region-type
Dome D - + Elliptic
Ridge R - 0 Parabolic

Saddle ridge SR - - Hyperbolic
Plane P 0 0 Hyperbolic

Saddle-point S 0 - Hyperbolic
Cup C + + Elliptic

Valley V + 0 Parabolic
Saddle-valley SV + - Hyperbolic

Table 1: Curvature classes

The signs and zeros of the mean and Gaussian curvatures can be used to categorise
the local surface geometry into a number of distinct topographic classes. These classes
are summarised in Table 1. In this paper, we are interested in the saddle-structures which
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are labelled as hyperbolic features in the table. These features are characterised by the
conditionH < 0. In particular we are interested in points that are consistent with being
the intersections of edge and symmetry lines, i.e. in the intersections of saddle-ridges and
saddle valleys. The joint condition for the intersections isK 6= 0 ^ H < 0.

By searching for the intersection of consistent saddle ridges, we overcome some of
the problems of localising saddle-points, for whichK = 0 andH < 0. This can prove
difficult since there are no constraints from the directionality of the desired feature. In
particular, we mitigate this difficulty and realise the corner localisation process using
templates to search for the junctions between symmetry lines and edge-lines.

5 Implementation
Based on the results presented in the previous section, we make the following observations
concerning the topographic structure of the vector potential in the proximity of corners

(1)There is a local minima of the magnitude of the vector potential in the direction of
the vector-potential

(2)There is a local maxima of the magnitude of the vector potential in the orthogonal
direction.

(3)At the locations of corners, the magnitude of vector potential along both the contour
and its orthogonal direction changes rapidly.

(4)At the locations of corners, the phase of the vector potential changes rapidly along
the directions mentioned above.

With the first two observations we search for saddle-points that are consistent when
viewed from a finite support neighbourhood. In practice we localise consistent topo-
graphic structure using a simplified form of template convolution. Our template tests
for orthogonal maxima and minima using non-maximum suppression and non-minimum
suppression tests. The saddle points are corner candidates.

Because of image noise and other imperfections, the points detected by our saddle-
template are not always the locations of true corners in the image. To overcome this prob-
lem we can appeal to the directional consistency of the derivatives of the vector potential
to refine the corner estimates.

Th meet this goal, we define a corner ”strength” measure. It measures the directional
variations of the vector potential along the contour and orthogonal to its direction. Let A

¯be the vector potential,r�A is the gradient of the magnitude of the vector potential in the
contour direction�. r�?A is gradient of the scalar potential in orthogonal direction. The
corner strength is defined as,

C = jr�Aj � jr�?Aj (7)

Corners are selected by thresholding the corner strength.

6 Experiments
In this section, we provide some experimental evaluation of the corner detection algo-
rithm. The experiment work is divided into two parts. We commence with some exam-
ples on binary imagery to illustrate some of the properties of the representation. Next we
furnish real world examples.
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To illustrate the properties of our vector potential representation and corner detection
algorithm, we use an simple binary image of ”E”. Figure 1(a) is the magnitude of the
vector potential for the binary image, Figure 1(b) shows the detected corners. For this
simple image, the results are all correct. Figures 1(c) is the direction of the vector po-
tential. The magnitude of the vector potential is displayed as a height in Figure 1(a) to
emphasise topographic structure. Here the saddle-structure associated with the corners is
clear. The ridge and ravine structure of the edge and symmetry lines is also evident. In
Figure 1(c) we display the vectorial representation of A

¯
(x; y; 0). The main feature to note

from this figure is that the direction of the vector potential changes rapidly at the corner
locations.

(a) Magnitude (b) Direction (c) Detected corners

Figure 1: Topographic representation and corner detection

As explained earlier, our image representation has the scale-space property. In the
second experiment, we use a real image to test our corner detection algorithm and show
the results at different scales. The image used in this study is the INRIA office scene.
Figure 2 shows the results of corner detection at number of different scales. The upper-
row of the figure shows the magnitude of the vector potential, while the lower-row shows
the detected corners superimposed on the original image. As we move from the left
column to the right column, the sampling heightz of the vector potential increases. As
the sampling height increases, then so only the dominant corners remain. However, the
majority of the significant corners persist over the full set of scales.

To provide some comparison, we have provided some experimentation with the SU-
SAN corner detector[22]. Figure 3(a) is the original INRIA office image. In Figure 3(b)
we show the result of applying the algorithm reported in this paper, while Figure 3(c)
shows the result of applying the SUSAN corner detector. The results obtained with our
algorithm are generally cleaner, and there are fewer false positives. There are also some
interesting qualitative differences in the detected corners. For instance in our algorithm,
the meeting of the line-like horizontal bars and thicker vertical bars of the window are
detected as single junctions. In the case of SUSAN, double corners are returned. The re-
sult of our algorithm is more perceptually intuitive and may prove more useful for higher
level matching problems.
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(a) Scale = 0 (b) Scale = 1 (c) Scale = 2

(d) Scale = 0 (e) Scale = 1 (f) Scale = 2

Figure 2: Corner detection in different scales

7 Performance analysis
Our final piece of experimental work is aimed at measuring the noise sensitivity of our
corner detector and comparing it with that of the SUSAN corner detector. To realise
this comparison, we have generated a synthetic image of a cog-wheel and have added
salt-and-pepper noise with known proportion. By varying the number of spikes on the
circumference of the cog, we can vary the opening angle of the corners. The synthetic
figure provides ground-truth data in which the number of target corners is known. We
focus on two aspects of our corner detector. The first of these is the scale-sensitivity of
the corner detection process. The second is its noise-sensitivity when compared to the
SUSAN corner detector.

As mentioned before, our method can detect corners at different scales. To evaluate
the performance of the algorithm, we have applied the corner detector to the vector po-
tential sampled at various heights above the image plane. Figure 4 shows the probability
of correctly detected corners as a function of different scales. The different curves are
for different angles. The main conclusion that can be drawn from this plot is that corner
detection at small scale(such as scale 0 and scale 1) almost always outperforms that at
large scale.

The second aspect of our sensitivity study is to provide some comparison with the
SUSAN corner detector under conditions of controlled noise. The plots in Figure 5 show
the probability of both correctly detected corners and false corners as a function of the
probability of added noise. In each case, the solid curve is the result of the proposed
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(a) Original image (b) Corners from new method (c) Corners from SUSAN

Figure 3: Corner detection results

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

P
ro

ba
bi

lit
y 

of
 tr

ue
 p

os
iti

ve
s

Scales

angle=30
angle=60
angle=90

angle=120

Figure 4: Comparison in different scales

algorithm, while the dotted curve is for the SUSAN corner detector. From the plots, we
can draw the conclusion that the proposed algorithm consistently outperforms the SUSAN
corner detector in the sense that it returns fewer false positives. The difference between
true positives detected by the two methods are not so different. For small angles, such as
30 degrees, the SUSAN corner detector is better than ours. But for large angles, such as
60 and 90 degrees, the proposed method is outperforms that of the SUSAN.

8 Conclusions
In this paper we have presented a corner detection method that is based on the topographic
analysis of a vector-potential image representation. According to our representation, cor-
ners are saddle-points where saddle-ridges and saddle-valleys intersect. We exploit this
property to develop a simple template-based corner detector. We align the templates in
the direction of the vector potential. The test for a corner is based on a local minimum
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in the vector potential direction and a local maximum in the orthogonal direction. We
impose a further test on consistency which is based on a significant joint change in the x
and y components of the vector potential. This ensures that there is a significant change
in boundary orientation.

Experimental results reveal the method to be an effective tool when compared with
the SUSAN corner detector. The proposed method is less sensitive to noise compared
with the SUSAN corner detector. Furthermore, our method offers the dual advantages of
providing a multi-scale representation and of delivering a more perceptually meaningful
junction representation for line-structures.

There are a number of ways in which the ideas presented in this paper could be devel-
oped. We clearly have a means of computing a curvature scale-space. In this respect our
work is similar to that of Brady and Asada[9] and Mokhtarian and Mackworth[17]. Our
next step is to emulate this work by investigating how the new corner representation can
be used for shape matching and recognition.
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(a) True Positives, Opening angle = 30

0

0.2

0.4

0.6

0.8

1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

P
ro

ba
bi

lit
y 

of
 fa

ls
e 

po
si

tiv
es

Probability of noise (angle=30)

New Method
SUSAN

(b) False Positives, Opening angle = 30
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(c) True Positives, Opening angle = 60
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(d) False Positives, Opening angle = 60
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(e) True Positives, Opening angle = 90
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Figure 5: Noise sensitivity for various opening angles(Solid curve, our method; dotted
curve, SUSAN)


