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Abstract

This paper describes how 3D facial pose may be estimated by fitting a tem-
plate to 2D feature locations. The fitting process is realised as projecting
the control points of the 3D template onto the 2D feature locations under
orthographic projection. The parameters of the orthographic projection are
iteratively estimated using the EM algorithm. The method is evaluated on
both contrived data with known ground-truth together with some more natu-
ralistic imagery. These experiments reveal that under favourable conditions
the algorithm can estimate facial pitch to within 3 degrees.

1 Introduction

Facial pose estimation is a key task for many practical computer vision applications. Spe-
cific examples include visual surveillance, camera assisted user interfaces [9] and user
identification verification [7]. In essence, the problem revolves around the fitting of a
generic 3D template to labelled facial features located in a 2D image. Once the template
has been fitted to the feature data, then 3D pose parameters may be used to manipulate the
face. Viewed in this way pose estimation may be regarded as an essential pre-requisite to
detailed facial verification.

There have been many attempts at efficiently recovering the 3D facial pose [4, 5,
8]. Most of these use domain specific cues to limit the search-space of the 3D model.
Typically, the generic facial template must be translated, scaled and subjected to Eulerian
rotation. One of the most powerful cues is to use the baseline of the eyes to estimate
the gaze direction [4]. In this way the tilt-direction may determined prior to rotation
estimation. Based on the known ratio of the inter-eye separation and the distance to other
axial features such as the tip of the nose or the lips, then the rotation angle may also be
estimated. In fact, the idea of using domain-specific cues to restrict the search-space is
quite generic and has been used in a number of 3D object registration applications. One
notable example is the fitting of 3D models to 2D images of vehicles [12].

The observation underpinning this paper is that although specific constraints can be
effectively used to restrict the search process, the underlying statistical methodology em-
ployed in the registration process is extremely limited. The aim of the work reported here
is to exploit the framework of the expectation-maximisation algorithm of Dempster, Laird
and Rubin [3] to learn the 3D pose parameters subject to constraints provided by the lo-
cation of the bilateral symmetry axis of the face and the orientation of the line connecting
the two eyes. Our motivation in adopting the EM algorithm as a registration engine is pro-
vided by recent work where it has been successfully used to match line-templates [10],
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Figure 1: The basic geometry of the face template.

shape templates [11] and 3D perspective models [2]. Here we commence by constructing
a generic 3D template of the facial features. The template is quite simple. It assumes that
the eyes and lip are approximately co-planar and that the tip of the nose resides at some
significant height above the plane. The eyes are assumed to be symmetrically placed ei-
ther side of the axis defined by the nose-tip and the lips. In keeping with the philosophy of
the EM algorithm we construct a mixture model over the set of missing correspondences
between the 2D facial features and the projections of the 3D template features. By as-
suming a Gaussian model for the registration errors, the template has freedom to deform
under both uncertainties in the positions of the feature points due to inaccuracies in the
template model together with the intrinsic variability of natural faces. The parameters
underpinning our model are the six degrees of freedom of the orthographic projection.
These are the two translation parameters on the image plane, an overall object scale to-
gether with the three Euler angles for the bary-centric (object-centred) model rotation.
We reduce the parametric complexity of the 3D template registration process by center-
ing and aligning the template at a fixed point on the bilateral facial symmetry axis. This
removes the three degrees of freedom associated with two template translation parameters
on the image plane together with an Euler rotation of the template symmetry axis in the
bary-centred co-ordinate system.

The outline of this paper is as follows. In Section 2 we outline the geometry of our
3D facial template and explain how it is projected onto the 2D image data. Section 3
reviews the EM algorithm and explains how it may be used to estimate the parameters of
orthographic projection. Experiments and sensitivity analysis are presented in section 4.
Finally, Section 5 offers some conclusions and outlines our future plans.

2 Geometric Model

Our basic aim is to register the control points in a 3D facial template against a set of
2D facial feature locations. The template is constructed as follows. We commence by
assuming that the left and right eyes, the lips and the chin are coplanar. These planar
features are symmetric about the axis defined by the centre-points of the lip and the chin.
The tip of the nose is assumed to elevated at some heighth above the plane and to fall on
the perpendicular plane through facial symmetry axis. The basic geometry of the template
is shown in Figure 1.

The projection of the template onto the locations of the 2D facial feature points has
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six degrees of freedom. These correspond to the two translation parameters on the 2D
image plane, the overall isotropic model scale together with the three Euler angles that
define the 3D rotation of the model points. However, the complexity of the projection
can be simplified using constraints provided by the 2D geometry of the labelled feature
points. For instance the direction on the bilateral facial symmetry axis is easily computed
by finding the perpendicular bisector of the line connecting the centres of the eyes. An
alternative is to connect the centres of the lips and chin.

The 3D template control points are represented by co-ordinate vectors v
¯j

= (xj ; yj ; zj)
T ,

where the indexj is drawn from the set of facial feature labelsM. The available facial
features are represented by 2D co-ordinate vectors w

¯i
= (xi; yi)

T whose indexi is drawn
from the set of data-itemsD. We represent the projection of the template control points
into the image co-ordinate system in the following manner

u
¯j
(�) = sUR�S T�v

¯j
�Xo (1)

Heres is the overall model scale parameter andXo = (xo; yo)
T is the translation of

the origin in the image co-ordinate system. The matricesR�, S� andT represent Eu-
ler rotations of the model about its bary-centre. The 3x2 matrixU selects the two x-y
components from the three x-y-z components of the transformed template control points.

The sequence of Euler rotations is defined as follows. The first step is to rotate the
template about the normal to the facial-plane by an angle�. Recall that in our template,
this plane is defined by the eyes, lip and chin. The net effect of this rotation is tilt the head
to the left or the right. In other words, it rotates the bilateral axis of facial symmetry by
an angle� in the image plane. The rotation matrix is given by

T� =

0
@ 1 0 0

0 cos � sin �
0 � sin � cos �

1
A (2)

The next step is to rotate by an angle about the z-axis of the template. In our represen-
tation, the z-axis is parallel to the bilateral symmetry axis of the face and passes through
the bary-centre of the template. The corresponding rotation matrix is given by

S =

0
@ cos sin 0
� sin cos 0

0 0 1

1
A (3)

Finally, there is a rotation about the new template normal by an angle�. The matrix
representation of this rotation is

R� =

0
@ 1 0 0

0 cos� sin�
0 � sin� cos�

1
A (4)

The parametric complexity of the projection can be reduced using some simple constraints
provided by the geometry of the facial feature points on the 2D image plane. In the first
instance, we can remove the translational degrees of freedom by placing the origin of the
template co-ordinate system at a salient point. Here we place the origin at a fixed distance
along the projection of the chin-lip line. This point corresponds to the perpendicular
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projection of the nose onto the bilateral symmetry axis of the face. Once the origin has
been established, the angle�, i.e. the rotation of the symmetry axis about the z-axis
defined by the nose, can be estimated from the orientation of bilateral symmetry axis on
the image plane. Once these constraints have been exploited, the orthographic projection
can be viewed as slanting and tilting the planar component of the template by angles 

and�. The net effect is just to subject the eye-lip-chin plane to affine shear. In other
words we have only to recover the slant and tilt parameters� and together with the
overall scales. In the next section, we explain how the resulting three degrees of freedom
facial template may be registered by using the EM algorithm to iteratively estimate the
parameter vector� = (s; �;  )T .

3 Registration Process

In this Section we detail our model registration process and describe how the underly-
ing set of transformation parameters can be recovered using the EM algorithm. The EM
algorithm was first introduced by Dempster, Laird and Rubin as a means of fitting incom-
plete data [3]. The algorithm has two stages. The expectation step involves estimating
a mixture distribution using current parameter values. The maximisation step involves
computing new parameter values that optimise the expected value of the weighted data
likelihood. This two-stage process is iterated to convergence. Although the EM algorithm
has been exploited in the matching of 2D shape models [11] and in recovery of object pose
by Hornegger and Nieman [6], the main contribution of the this paper is to demonstrate
the effectiveness of the algorithm in matching generic facial templates to poorly localised
feature-points.

3.1 Expectation

Basic to our philosophy of exploiting the EM algorithm is the idea that every facial
feature-point can in principle associate to each of the points in the 3D model template
with somea posterioriprobability. This modelling ingredient is naturally incorporated
into the fitting process by developing a mixture model over the space of potential match-
ing assignments which represent the “missing data” in our application. The expectation
step of the EM algorithm provides an iterative framework for computing thea posteri-
ori matching probabilities using Gaussian mixtures defined over a set of transformation
parameters.

The EM algorithm commences by considering the conditional likelihood for the 2D
facial feature locations w

¯i
given the current set of transformation parameters,�(n). The

algorithm builds on the assumption that the individual data items are conditionally inde-
pendent of one-another given the current parameter estimates, i.e.

p(wj�(n)) =
Y
i2D

p(w
¯i
j�(n)) (5)

Each of the component densities appearing in the above factorisation is represented by a
mixture distribution defined over a set of putative model-data associations

p(w
¯i
j�(n)) =

X
j2M

p(w
¯i
jv
¯j
;�(n))P (v

¯j
j�(n)) (6)
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The ingredients of the above mixture density are the component conditional measurement
densitiesp(w

¯i
jv
¯j
;�(n)) and the mixing proportionsP (v

¯j
j�(n)). The conditional mea-

surement densities represent the likelihood that the 2D facial feature location w
¯i

originates
from the 3D template control point indexedj under the prevailing set of transformation
parameters�(n). We use the shorthand notation�(n)j = P (v

¯j
j�(n)) to denote the mixing

proportions. These quantities provide a natural mechanism for assessing the significance
of the individual template control points in explaining the current data-likelihood.

Conventionally, maximum-likelihood parameters are estimated using the complete
log-likelihood for the available data

L(�(n);w) =
X
i2D

ln p(w
¯i
j�(n)) (7)

In the case where the conditional measurement densities are univariate Gaussian, then
maximising the complete likelihood function corresponds to solving a system of least-
squares equations for the transformation parameters. By contrast, the expectation step of
the EM algorithm is aimed at estimating the log-likelihood function when the data under
consideration is incomplete. In our 3D template-matching example this incompleteness
is a consequence of the fact that we do not know how to associate feature tokens in the
image and their counterparts 3D face template. In other words we need to average the
log-likelihood over the space of potential correspondence matches. In fact, it was Demp-
ster, Laird and Rubin [3] who observed that maximising the weighted log-likelihood was
equivalent to maximising the conditional expectation of the log-likelihood for a new pa-
rameter set given an old parameter set. For our matching problem, maximisation of the
expectation of the conditional likelihood, i.e.E[L(�(n+1);w)j�(n);w)], is equivalent to
maximising the weighted log-likelihood function

Q(�(n+1)j�(n)) =
X
i2D

X
j2M

P (v
¯j
jw
¯i
;�(n)) ln p(w

¯i
jv
¯j
;�(n+1)) (8)

The a posterioriprobabilitiesP (v
¯j
jw
¯i
;�(n)) play the role of matching weights in the

expected likelihood. We interpret these weights as representing the probability of match
between the facial feature point indexedi and the template control-point indexedj. In
other words, they represent model-datum affinities. Using the Bayes rule, we can re-write
the a posteriori matching probabilities in terms of the components of the conditional
measurement densities appearing in the mixture model in equation (6)

P (v
¯j
jw
¯i
;�(n)) =

�
(n)
j p(w

¯i
jv
¯j
;�(n))P

j02M �
(n)
j0 p(w¯i

jv
¯j

0 ;�(n))
(9)

The mixing proportions are computed by averaging thea posterioriprobabilities over the
set of facial feature points, i.e.

�
(n+1)
j =

1

jDj

X
i2D

P (v
¯j
jw
¯i
;�(n)) (10)

In order to proceed with the development of the facial template registration process
we require a model for the conditional measurement densities, i.e.p(w

¯i
jv
¯j
;�(n)). Here
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we assume that the required model can be specified in terms of a multivariate Gaussian
distribution. The random variables appearing in these distributions are the error residuals
for the 2D position predictions of thejth template point delivered by the current estimated
transformation parameters. Accordingly we write

p(w
¯i
jv
¯j
;�(n)) =

1

(2�)
3

2

p
j�j

exp

�
�
1

2
�i;j(�

(n))T��1�i;j(�
(n))

�
(11)

In the above expression� is the variance-covariancematrix for the vector of error-residuals
�i;j(�

(n)) = w
¯i
� u

¯j
(�(n)) between the components of the predicted template point

positions u
¯j
(�(n)) and the facial feature locations in the data, i.e. w

¯i
. Formally, the

matrix is related to the expectation of the outer-product of the error-residuals i.e.� =

E[�i;j(�
(n))�i;j(�

(n))T ]. With these ingredients, and using the shorthand notationq
(n)
i;j =

P (v
¯j
jw
¯i
;�(n)) for thea posteriorimatching probabilities, the expectation step of the EM

algorithm simply reduces to computing the weighted squared error criterion

Q0(�(n+1)j�(n)) = �
1

2

X
i2D

X
j2M

q
(n)
i;j �i;j(�

(n))T ~��1�i;j(�
(n)) (12)

In other words, thea posteriori probabilitiesq(n)i;j effectively regulate the contribu-
tions to the likelihood function. Matches for which there is little evidence contribute
insignificantly, while those which are in good registration dominate.

3.2 Maximisation

The maximisation step aims to locate the updated the parameter-vector�(n+1) that op-
timises the quantityQ(�(n+1)j�(n)), i.e. �(n+1) = argmax�Q

0(�j�(n)). We solve
the implied weighted least-squares minimisation problem using the Levenberg-Marquardt
technique. This non-linear optimisation technique offers a compromise between the steep-
est gradient and inverse Hessian methods. The former is used when close to the optimum
while the latter is used far from it. In other words, when close to the optimum, parameter
updating takes place with step-size proportional to the gradientr�Q

0(�j�(n)). When far
from the optimum the optimisation procedure uses second-order information residing in
the Hessian,H , ofQ0(�j�(n)); the corresponding step-size for the parameter vector� is
H�1r�Q(�j�(n)).

4 Experiments

The evaluation of our pose estimation procedure involves experiments on both contrived
and natural imagery. The contrived data is provided by various camera views of a plaster
bust. Here the ground-truth pose angle is measured in the laboratory and the facial feature
points are marked by hand. The natural data is provided by 15 different camera views for
each of eight different individuals. Here we experiment with both hand-labelled together
with automatically segmented and labelled feature points. The segmentation process uses
Fourier-domain matched filters to characterise each of eight facial features (left and right
eyebrows, left and right eye centres, hairline, nose, lips and chin) [1]. When averaged
over the eight feature types, the feature localisation error is about 5 pixels. However,
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Figure 2: The positional accuracy of automatically segmented points.

for certain features (e.g. the eye centres) the localisation error is about 3 pixels. These
sensitivity systematics are summarised in Figure 2 which shows the localisation error as a
function of facial pose and camera direction (fronto-parallel, oblique from above, oblique
from below).

We commence our study by considering the contrived data. Figure 3 shows a series
of views of a plaster bust. There are three camera directions. These are approximately
fronto-parallel, oblique from above and oblique from below. Under each of the views we
list the ground truth rotation angle for the bust. This angle is measured with a protractor
attached to the base of the bust. Zero rotation angle corresponds to the case when the
nose points straight towards the camera. Also listed below the different views is the pose
angle computed using our EM algorithm. For pose angles of up to 40 degrees in both
the clockwise and counterclockwise senses, there is good agreement between the ground-
truth and recovered angles.

This feature of the data is illustrated more directly in Figure 4. Here we show the dif-
ference between the ground-truth and recovered pose angles as a function of the ground-
truth angle. There are three features of this plot that deserve further comment. Firstly, for
moderate rotation angles the average error is approximately 3 degrees. Secondly, the error
increases dramatically for rotation angles greater than 4 degrees. Finally, there appears to
be a positive bias to the computed error. This is attributable to the fact that we initialise
our face-template in a fronto-parallel configuration at zero rotation angle. In other words,
the model must always make a positive rotation on to the data. Local optima or premature
convergence in the fitting process may therefore bias the method to under-estimate the
rotation angle.

To illustrate the iterative qualities of the algorithm, Figure 5 shows the feature tem-
plate converging on the labelled feature points. The two examples are for the plaster-bust
and the natural image. The first image shows the initial template alignment using con-
straints on the position of the origin co-ordinates and the direction of the bilateral sym-
metry axis. The second image shows the final position of the template after convergence
of the EM algorithm.

Finally, we focus on how the template registration method degrades when automat-
ically segmented, rather than hand labelled feature points, are used. Figure 6 shows a
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(a) T : -30 E : -29.2 (b) T : -10 E : -9.8 (c) T : +10 E : +14.8 (d) T : +30 E : +31.7

(e) T : -30 E : -32.7 (f) T : -10 E : -9.6 (g) T : +10 E : +12.3 (h) T : +30 E : +34.4

(i) T : -30 E : -34.4 (j) T : -10 E : -11.2 (k) T : +10 E : +12.9 (l) T : +30 E : +35.4

Figure 3: A series of views of a plaster bust in which the camera direction is approx-
imately fronto-parallel, oblique from above and oblique from below. The ground-truth
angles are denoted by “T” and the estimated angles by “E”.
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Figure 4: The difference between the ground-truth and recovered pose angles as a function
of the ground-truth angle.

(a) initial step (b) final step (c) initial step (d) final step

Figure 5: The 3D feature template converging on the labelled feature points.

plot of the difference in computed rotation angle for the hand-labelled and automatically
segmented points. Each entry in the plot is averaged over eight different individuals.
The main feature to note from the plot is that the error increases with the rotation angle.
However, for moderate rotation angles, the error is only about 3 degrees.

5 Conclusions
The main contribution in this paper is to present a statistical framework for iteratively
registering 3D facial templates against 2D feature points. The iterative procedure is based
on the EM algorithm and allows the parameters of orthographic projection between the
3D model and the 2D data to be estimated. An analysis on ground-truthed data reveals
that the method is capable of recovering the rotation angle of the head to within 3 degrees
provided that the overall rotation does not exceed 40 degrees. The main limitation of the
method is the need for accurately located feature points. Our next steps will be focussed
on improving the robustness of localisation process. Here we aim to couple the feature
segmentation and pose estimation steps of the algorithm.
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