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Abstract

In this paper we present a new method for point matching in stereosco-
pic color images. Our approach consists �rst in characterizing points
of interest using di�erential invariants. Then we de�ne additional �rst
order invariants using color information, which make suÆcient the cha-
racterization till �rst order. In addition, we make our description ro-
bust to important image transformations like rotation, range of view-
point and linear illumination variations. Second, we propose a new
incremental technique for point matching using our characterization,
which works robustly and rapidly whatever the number of points to be
matched. Our stereo matching scheme is evaluated using stereo color
images, with viewpoint and illumination variations. The very good re-
sults obtained clearly show the pertinence of our approach. Our color
characterization produces a high rate of good matches, even though
only �rst order derivatives are used. Results on images holding many
points show that our matching process is robust and rapidly imple-
mented even if the points to be matched are numerous. It is a great
asset, when matching a high set of points is necessary for example to
realize dense depth maps between images. 1
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1 Introduction

This work addresses the problem of matching stereoscopic, uncalibrated color im-
ages, with the aim of doing transfer, i.e computing synthetic images having in-
termediate points of view. In order to match point primitives, we revisit point
characterization using di�erential invariants belonging to iconic methods in gray
level images. Until now, these invariants were de�ned only for gray level images
and used to be computed till order 3 to characterize eÆciently points. We show
that color information can robustly improve characterization, not only by mul-
tiplying the gray level features but also by providing new invariants, and this
only using �rst order derivatives. In addition, we describe a method to make
this characterization invariant to some usual transformations of the image. Then
we implement a new fast method of matching using this characterization. We
show that this approach is robustly and rapidly achieved, even if the points to be
matched are numerous.
Our matching scheme is decomposed into three stages : In section 2, we de�ne
a new di�erential characterization of points of interest for color images, which is
made invariant to image orthogonal transformations and to linear changes of in-
tensities. In section 3, we de�ne a new points matching process, working with our
color invariants. To be e�ective, transfer methods impose matching a big set of
points between the images. So we present in section 4 an incremental technique
for matching rapidly and eÆciently high sets of points. This technique integrates
the simple matching process described in section 3, and enriches it with geomet-
ric constraints. In section 5, matching results �rstly demonstrate the validity of
our point characterization and our matching technique, on images di�ering from
some usual image transformations. Second, results on big sets of points show the
pertinence of our incremental matching technique.

2 Characterization with di�erential invariants

Some techniques of point matching called iconic methods use signal information
directly to characterize the points to be matched. One of the most popular tech-
niques is the correlation method [10] [13]. Other more recent methods, working on
gray value images, consist in characterizing points by using differential invariants
of the signal.
Among iconic methods, the correlation methods produce very good results but are
very time consuming and very restrictive because of the small transformations they
allow between images. On the contrary, methods based on di�erential invariants
are more robust against rotations between images and are also faster to implement.
But in gray level images, it is often necessary to consider invariants up to the third
order [11] to obtain a good characterization of the primitives, and these are diÆcult
to estimate in a stable way.
Our work consists in using di�erential invariants for point characterization. We
revisit them in section 2.1 and we introduce new invariants of �rst order speci�c
to color. In section 2.2, we present our characterization which overcomes the main
drawbacks of the classical invariants, by considering only �rst order derivatives
and color information. This new description is robust and invariant to orthogonal
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transformations of image. We also make it invariant to linear illumination varia-
tions in section 2.3.

2.1 Invariant Image Attributes

As it has been shown by Hilbert [7], any invariant of �nite order can be expressed
as a polynomial function of a set of irreducible invariants. This set is well known
for �rst and second order properties [4] [11] and is better expressed in a system of
coordinates, no longer linked to the rotation, as the well known Gauge coordinate
L, L�, L��, L��, L��, where � is the unit vector given by � = rI

jrIj and � ? �.

The 5 following invariants, which combine these attributes, perform quite well for
matching two gray level images :

I I�� + I�� I�
I��

I�

I��

I�

Considering a set of color image fR,G,Bg and the group of rotation (speci�ed
by just one parameter i.e the rotation angle), the set of invariants for �rst and
second order presents 6 degrees of freedom by color channel, and so will include
6� 3� 1 = 17 invariants. These may include the �fth invariants for each channel,
and two additional invariants that may be chosen from the following set :

rR:rG rR:rB rG:rB

2.2 Characterization using �rst order di�erential

invariants and color information

Our idea is to use Hilbert's invariants which involve only derivatives till �rst order.
The characterization obtained with gray level images would be too poor, but we
show here that it is widely compensated by color information. We obtain a vector
of invariants against translation and rotation containing 2�3+2 = 8 components.
We call it ~vcol :

~vcol(~x; �) =
�
R; j rR j2; G; j rG j2; B; j rB j2;rR:rG;rR:rB

�T
(1)

Using only �rst order invariants presents two main advantages : �rst it allows
very robust characterization with regard to noise and second, the complexity of
the method is small since only 14 images are computed : R, Rx, Ry, j rR j, G,
Gx, Gy, j rR j, B, Bx, By, j rR j, rR:rG, rR:rB. The reader can �nd further
details and comparative results about this description in [9].

2.3 Color constancy

In order to obtain a robust characterization of our color image primitives, we want
to make it invariant to changes of intensities. It requires �rst estimating a very
precise model for these changes. According to the recent work of Finlayson on
color constancy [3], we use its diagonal model (D(3�3)) with an additional vector
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of translation (T(3)) to get linear invariance to intensities. We obtain a model with
six degrees of freedom :

~x0 = D~x + T (2)

where ~x = (r; g; b)T is the pixel color and ~x0 = (r0; g0; v0)T its linear transformation.
Other more complex models exist but this one provides the best quality/comple-
xity ratio. Then, to make the characterization invariant, we normalize the images
in order to make them independent of the model, before computing ~vcol. Our
method is performed on each color channel fR,G,Bg : we resize the gray value of
each pixel in a given interval. This process makes the image independent of the
parameters D and T of the model. We preserve the local properties of the pixels
by implementing it locally in a window centered on the pixel to be normalized.
For a complete description and comparative results about the image normalization
described in this section, see [5].

3 Our matching method

When point characterization is achieved, matching method consists in comparing
each feature vector of the �rst image with the ones of the second image, in order
to �nd the points which looks the most similar. The most complete comparison
method seems to be the Mahalanobis distance [11]. But this method involves the
covariance matrix of the vector components, which is very complex and diÆcult
to implement with exactness. So we present a more simple solution to compute
the likeness of two vectors.

3.1 A method for comparing feature vectors

The components of ~vcol present their own range of values. So we resize each of them
in a given interval, before using the Euclidean distance to make the comparison.
This method is sub-optimal according to the Mahalanobis distance's one, but it
looks suÆcient, insofar as the percentage of correct matches obtained is very high.

3.2 Matching

Using these distances, the most natural process to realize the matching is to select
the pairs (m1i;m2j) whose distance is lower than the one of all the possible pairs
(m1i;m2j0) and (m1i0 ;m2j). But this technique may eliminate a lot of matches
which could have been good matches. So we keep only matches associated to small
distances and we eliminate the possible remaining ambiguities by using a relax-
ation technique which works with semi-local constraints [13] [11].

The reader can see in [9] matching results using the characterization developed
in section 2.2 and the matching technique described in this section : the rate of
correct matches overshoots 90% the most of the time, though matched images are
very di�erent (important rotations, di�erent points of view, linear illumination
variations). In addition, the implementation is much faster than the ones based
on correlation. In next section, we show that the matching method can be notably
improved, in particular for big sets of points matching.
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4 An incremental algorithm for constrained

matching

The main drawbacks of the comparison method described in section 3 is �rst its
complexity. If we do not have any information about the disparity between the
two images (for example when the cameras are not calibrated), the complexity
of the comparison method is equal to O(m � n) for m given points in the �rst
image and n in the second one. Consequently, the second inconvenient is the rate
of ambiguities which arises with the number of points to be matched. It makes
the relaxation process more time consuming and �nally may generate more bad
matches. To sum up, the matching process is eÆcient until 200 or 300 points but
becomes unworkable with more points. It is for example necessary to match many
points in order to realize dense depth maps between two images.
So our idea is to make the search area of the corresponding point in the other
image as smallest as possible. If the disparity map between the two images is
unknown, we must localize this area ourselves. Let us suppose that we have at
our disposal a set M of good matches between the images. We show in the next
section how these data can give us interesting geometric informations about the
search area.

4.1 The available geometric information

We consider in this paper the model of the cameras as a Stenope model, which
modelizes the projection as a pure perspective projection.

4.1.1 Using the epipolar geometry

If M contains at least 8 matches, the epipolar geometry of the two cameras sys-
tem can be estimated. It is characterized by a fundamental matrix F(3�3) which
satis�esmT

2 F m1 = 0 for two matched points m1 and m2. This equation expresses
that the corresponding point m2 in the second image of the point m1 of the �rst
image lies on the line F m1, and that the corresponding point of m2 in the �rst
image lies on F T m2. It represents all the information that can be estimated from
two images when the cameras are not calibrated. When F is estimated, it is very
easy to see that the complexity of the matching process is very reduced seeing that
the search area becomes a line. The fundamental matrix F computed from the
matches M will be called FM in the next sections.

4.1.2 Using a Delaunay triangulation

Let us consider a 3D point P belonging to a triangle T , (p1; p2) its projections
on the two images and (t1; t2) the projections of the triangle. It can be easily
demonstrated that a triangle is transformed in a triangle by projective transfor-
mation, so t1 and t2 are triangles too. The point p1 is necessarily located in t1
and has necessarily its corresponding point p2 in t2. If P does not belong to T ,
the position of p2 related to t2 is function of the disparity. In practice, we show
that it is enough to consider only the closest neighboring triangles of t2. So we
are able to de�ne an area in which the corresponding point of a given point can
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be found. We compute a triangulation on the matched points of the �rst image
and we estimate the triangulation of the second image from it : a triangle of the
second image has its 3 vertices matched to points of the same triangle in the �rst
image. We have chosen for the �rst image triangulation a Delaunay triangulation
because it produces triangles the most equiangular possible [2]. The triangulation
of the second image obtained from it is not necessarily a Delaunay triangulation.
We call in the next sections TM the two triangulations based on the matches M.

By combining these two constraints, the search of the corresponding point is re-
duced to a segment, if the studied point belongs to a triangle of the triangulation,
as shown in �gure 1. The search is reduced to some segments or to the entire
epipolar line if the studied point does not belong to any triangle.

a

b

c

a’

b’

c’

m

F.m

m’

Image 2Image 1

T

F.m’

Figure 1: (a,a'), (b,b') and (c,c') are correct matches. A point m of Image1 located
in the triangle (a,b,c) has its corresponding point in Image2 on the epipolar line
F:m and in the triangle (a',b',c'). The point m' has its corresponding point in
Image1 on F T :m0 and in (a,b,c).

In this section we have introduced geometric constraints which allow us to
reduce the search area of the point to be matched, even if we do not have any
information about the disparity between the images and whatever the images are.
These constraints are going to be integrated in the incremental algorithm described
in the next section.

4.2 Our incremental algorithm

The constrained matching method presented above supposes that we have a set
of matched points at our disposal to initiate the matching using the geometric
constraints. So we can de�ne an incremental algorithm of matching which compu-
tes at iteration i the set of matchesMi from the geometric constraints associated
to the matches Mi�1 of the iteration i� 1. This method proceeds in 6 steps :

1. Extraction (adding) of points of interest in the images : sets P i
1 and P i

2.

2. Characterization of each point using the feature vector ~vcol (see section 2.2
for the characterization method).

3. For each point p1k 2 P
i
1 and p2l 2 P

i
2, estimation of the search area in the

other image, using FMi�1
and TMi�1

if exist : A1k and A2l.

4. Comparison of the feature vectors of p1k and p2l which satisfy : p1k 2 A2l

and p2l 2 A1k . A set of matches Mi
? with possible reduced ambiguities is

obtained. The method of vector comparison has been described at section
3.1.
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5. Relaxation method on Mi
? (see section 3.2) : a set of matches Mi without

ambiguities is obtained.

6. Computation of the geometric constraints : the triangulation TMi and the
fundamental matrix FMi associated to the matches Mi.

7. Back to 1 while not enough matches.

Seeing that the matchesMi are computed using the ones of the iteration i�1,
it is very important to obtain a very high rate of good matches at each iteration.
This condition is most of the time satis�ed since the geometric constraints allow
to eliminate eÆciently many ambiguous solutions. It is interesting to notice that
the average width of the segments decreases as the number of iterations increases ;
so the matching process is done faster and faster with less and less ambiguities.
The main diÆculty remains to obtain a very good estimation of the �rst set of
matches M0 for which geometric constraints are not available. Our solution is to
keep at the end of the relaxation process only a few percentage of the matches
obtained (in practice approximatively 40% of the matches) : the ones which have
got the best matching scores. The experience shows that they represent a very
good basis to compute matches of iteration 1.

5 Matching results

The points of interest to be matched P i
1 and P

i
2 are computed using a generalization

of the Harris detector to color data [1] [6] [9], which needs only �rst order deriva-
tives. We characterize them using the feature vector ~vcol of equation 1.                        

Figure 2: Two images Room di�ering from viewpoint and illumination : 155
matches were found using the basic matching technique. The epipolar line in the
second image corresponds to the point 54 of the �rst image. The line of the �rst
image corresponds to the point 112 of the second image.

The images are locally normalized (see section 2.3). So the characterization is
made invariant to rotation and change of intensities. The matching is realized using
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the incremental method described in section 4. The fundamental matrices FMi

can be estimated by using a Ransac algorithm [12]. But we estimate them using
a robust linear method with the help of the Least Median of Squares regression
(LMedS) [13] [8]. It produces a fast and reliable estimation of the FMi , since the
important thresholding of the �rst iteration and the geometric constraints applied
in the other ones produce few outliers. The triangulation of the �rst image used to
compute TMi is a semi-dynamical Delaunay triangulation [2] : it is implemented
in an incremental way in order to be the most eÆcient within our incremental
matching process ; at iteration i, the triangulation is computed by inserting the
points P i

1, belonging to M
i, in the triangulation TMi�1 computed at the previous

iteration.                        

Figure 3: The two same images Room : 170 correct matches were found using the
incremental matching algorithm and the geometric constraints. The epipolar lines
in the �rst image correspond to points f82,23,147,114g in the second image ; the
ones of the second image correspond to points f60,81g in the �rst image.

Figures 2 and 3 show the results of the matching process on (220� 231) points
of interest. Figure 2 brings to the fore matches (called M) computed only with
the basic matching method described in section 3 whereas �gure 3 shows matches
(called Minc) using the incremental method. These two results are very easy to
compare :

� Time consuming : half an hour was necessary to obtain the set M. Only 3
iterations and a few minutes were necessary to obtain Minc. It is due to
the fact that the complexity in the feature vector comparison algorithm is
smallest, since the search areas are limited. The other reason is that the
rate of ambiguous matches is much less important at the beginning of the
relaxation algorithm, which is consequently realized faster.

� Results : we obtain better results with the incremental method (170 matches
all correct) than with the basic one (155 matches with few bad matches).
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Some correct epipolar lines estimated using Minc have been superposed on
the images : using the epipolar geometry as a matching constraint (�gure
3), we succeed in matching correctly the match 82 for example, whereas the
same points in �gure 2 have been incorrectly matched (matches 112 and
115). This comment shows the pertinence of our incremental approach. The
reader can notice that the epipolar geometry obtained is very precise.

Figure 4 shows extracts of images for which more than 600 points have been
matched in approximatively a quarter of hour, using our incremental matching
method. The rate of correct matches is above 95% and the �nal epipolar geometry
is very precise. For comparison, the basic algorithm has taken roughly 5 hours to
obtain a solution having a higher rate of false matches ! This result shows clearly
that our approach is the most adapted when there are many points to match.                        

Figure 4: Extracts of two images Toys di�ering from viewpoint and illumination.
The epipolar lines in the �rst image correspond to points f158,293,417g in the
second image ; the ones of the second image correspond to points f449,218,231,395g
in the �rst image.

At the end of the matching process, we have obtained a set of matched points
M. In addition we have got the epipolar geometry of the cameras system charac-
terized by FM and a triangulation TM of the matched points. These geometric
constraints have been very useful to realize an eÆcient matching and it is inte-
resting to notice that their utility is not achieved insofar as they are necessary to
implement methods of dense matching, images transfer or 3D scene reconstruction.

6 Conclusion

In this paper, we have de�ned a new method for matching stereoscopic, uncali-
brated color images. We have �rst presented new di�erential invariants speci�c to
color information. We have shown that adding them to Hilbert's invariants com-
puted for each color channel gives a suÆcient information to consider only deriva-
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tives till �rst order. In addition, this description can be easily made invariant to
the orthogonal images transformations and aÆne transformations of intensities.
Second, we have implemented an incremental technique of point matching, based
on this di�erential characterization, which works robustly and rapidly. Indeed,
results of the last section show the pertinence of our approach ; the percentage
of correct matches is very high (above 95%) and the recovered epipolar geometry
very accurate, in spite of the di�erences between the images (di�erent points of
view and illumination variations) and the high number of points to be matched.
Using this matching scheme, we are able to match rapidly a high number of points,
and so now we are able to implement eÆciently methods of dense depth maps com-
putation. Besides, we are already working on matching images involving changes
of scale, as when the camera comes near the scene from one image to another. A
method derived from the one we have described is producing promising results.
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