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Abstract

This paper investigates the trifocal tensor for an affine trinocular rig and de-
fines anaffine trifocal tensor. The question of the degrees of freedom of the
tensor entries will be addressed, and a novel algorithm to compute the tensor
by a linear technique is presented. It will be shown that 4 point or 8 line
correspondences along the three images are enough for a reliable computa-
tion of the trifocal tensor in the affine case (uncalibrated, weak perspective
camera model), in contrast to the projective case, where at least 7 point or
13 line correspondences are needed for a linear computation (and usually
with poor results). An analysis of the error in the approximation of a generic
trifocal tensor by the affine trifocal tensor is carried out and preliminary ex-
periments with synthetic and real data show the reliability and robustness of
the approximation under a wide range of conditions.

1 Introduction

The trifocal tensor is an important tool for several tasks in Computer Vision, like recon-
struction [1, 14], self-calibration [6] and motion segmentation [17], and its computation
is still a research topic [5, 18]. The linear algorithms [10, 9] have simple conception and
execution, but they do not take the appropriate constraints into account. This results in a
poor behaviour when the number of point or line correspondences available is small, as
demonstrated in [5]. On the other hand, the nonlinear methods are more sensitive to noise
and do not make use of all data available.

The concepts of affine cameras (uncalibrated cameras under weak perspective) and
affine fundamental matrices are well established [11, 16], and their importance is clear. In
situations where the depth variation�Z of the scene is small compared with the average
distanceZ the scene features to the camera centre, e. g.�Z=Z < 0:1, the approximation
has many advantages, like robustness. Also less points are needed for the computation
of both the affine camera and the affine fundamental matrix. For a generic fundamental
matrix F, the constraint thatdet(F) = 0 must be ensured somehow, while in the affine
case this constraint is automatically satisfied. As will be shown, all these features are
automatically valid for the here introducedaffine trifocal tensor, that extends the results
presented in [17] about affine trilinear constraints. The problems of affine reconstruction
and self-calibration for affine cameras in multiple views, topics related to the contents of
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this paper, are addressed in [13, 15, 14]. In [13], Euclidean motion/structure recovery is
done using weak perspective cameras, while in [15] the cameras are assumed to have the
same intrinsic parameters, except for a scale factor, what is consistent with the context of
self-calibration. In [14] only line correspondences are used, since the method presented
is based in one-dimensional cameras.

A review of the trifocal tensor is presented in the next section, where tensorial nota-
tion is used. A good introduction to this subject can be found in [3]. In Section 3 the
affine fundamental matrix [16] will be revisited, leading to a natural development of the
affine trifocal tensor. We verify that the 16 entries of this tensor must satisfy only 4 con-
straints, in contrast with the general case where the 27 entries of the tensor must satisfy
9 constraints. A linear algorithm for its computation, adapted from [10], is developed in
Section 4, and experiments in the transfer of points and lines are presented in Section 5.

2 Review of the Trifocal Tensor

The material presented in this section is based on [9, 10]. No proofs of the results will be
presented, as they can be found in these references.

LetM = [Ij0],M0 = [aij ] andM00 = [bij ] be three camera matrices, and let�, �0 and
�
00be three homogeneous lines associated with the images of a line in 3D space, taken

from the camera with corresponding superscript. The constraint that the planes defined
by such lines and their respective camera centres must intersect in the same line in space
is stated in the relation

�i � �0j�
00

kT
jk
i ; (1)

where� means equality up to a scale factor and where

T jk
i = aji b

k
4 � aj

4
bki (2)

is defined as the trifocal tensor.
Let u, u0 andu00 be the images of a point in 3D space, taken from the cameras with

corresponding superscripts. The points are related through the trifocal tensor by the ex-
pression

u00l � uk(u0iT jl

k � u0jT il
k ): (3)

(1) and (3) execute a transfer of lines and points through the three images, i. e., given two
images of a line or a point, a third image can be determined (see fig. 1).

2.1 Degrees of Freedom in the Entries of the Trifocal Tensor

A triplet of cameras has 33 degrees of freedom (dof) [4] (11 dof for each one). Since
the trifocal tensor is able to determine 3D structure up to a 3D homography [9] (15 dof),
the correspondent trifocal tensor must have18 = 33 � 15 degrees of freedom, so there
are 9 constraints over its 27 entries. This is an important issue in its computation, since
a method that does not take these constraints into account may produce a “non-valid”
tensor, i. e. a3�3�3 tensor that does not hold the properties of the trifocal tensor. In the
affine case, the triplet of cameras has only 24 dof, and the 3D affine transformation has
12. Thus the affine trifocal tensor holds only 12 dof. As will be shown in the next section,
the affine trifocal tensor has 16 non-zero entries, and thus there are only 3 constraints to
be imposed, since the overall scale is not important.
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Figure 1: Images of a point and a line in a trinocular stereo rig.

3 The Affine Trifocal Tensor

The key idea in the derivation of the affine trifocal tensor is to transform, by the applica-
tion of an appropriated 3D homography, a generic triplet of affine cameras to a new triplet
that can be used in the computation of the tensor as defined in (2). This method can also
be used in the derivation of the affine fundamental matrix, yielding, as will be shown, the
same result found in [16]. This procedure also implies that the affine trifocal tensor will
naturally inherits the stability and reliability of the affine camera.

3.1 The Affine Fundamental Matrix Revisited

Consider the camera~P2 below, where the motivation for the choice of indexes will soon
be clear:

~P2 =

2
4

a11 a12 a13 a14
a21 a22 a23 a24
0 0 a33 0

3
5 : (4)

It is shown in [7] that the fundamental matrixF12 related to the pair of cameras~P1 = [Ij0]
and ~P2 = [Pjp] is given by~F12 = [p]�[P], where[p]� is the skew-symmetric matrix
such that[p]�a = p � a for all a. The matrix ~P1 is not an affine matrix, so it is
not possible to use it directly with in the computation of an affine fundamental matrix.
Nevertheless, the pair of affine cameras~P0

1
and ~P0

2
given by

~P0

1 =

2
4

1 0 0 0
0 1 0 0
0 0 0 1

3
5 and ~P0

2 =

2
4

a11 a12 a14 a13
a21 a22 a24 a23
0 0 0 a33

3
5 (5)

are transformed to~P1 and ~P2 by the 3D homographyH, i. e., ~P1 = ~P0

1
H and ~P2 =

~P0

2
H, where

H =

2
664

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

3
775 : (6)
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Since the fundamental matrix is invariant to a 3D homography applied to each camera [7],
the fundamental matrixF for both pairs is the same, and thus,

F =

2
4

0 0 �a24a33
0 0 �a14a33

a24a11 + a14a21 a24a12 + a14a22 a24a13 + a14a23

3
5 : (7)

The affine fundamental matrix reconstructs the two cameras (16 dof) up to a 3D affine
homography (12 dof), and thus it must have 4 dof, or 5 dof minus a scale factor, exactly
how it is pointed in (7). So the affine fundamental matrix is, by definition, minimally
parametrised, and four correspondences are enough for its computation. It is worth noting
that det(F) = 0; this condition must be imposeda posteriori in many algorithms to
compute a general fundamental matrix.

3.2 Derivation of the Affine Trifocal Tensor

The method presented in the previous section can also be extended to the computation of
the trifocal tensor. Beginning with the affine cameras~P1, ~P2 and ~P3, where

~P3 =

2
4

b11 b12 b14 b13
b21 b22 b24 b23
0 0 0 b33

3
5 ; (8)

the application of the homographyH to each of the matrices~Pi, i = 1; 2; 3, results in a
new triplet of cameras with the same trifocal tensorT jk

i (represented here by the matrices
T��

i , i = 1; 2; 3), which can be calculated by the definition in (2), resulting in

T��

1 =

2
4

a11b14 � a14b11 a11b24 � a14b21 0
a21b14 � a24b11 a21b24 � a24b21 0

0 0 0

3
5 ; (9)

T��

2 =

2
4

a12b14 � a14b12 a12b24 � a14b22 0
a22b14 � a24b12 a22b24 � a24b22 0

0 0 0

3
5 ; (10)

T��

3 =

2
4

a13b14 � a14b13 a13b24 � a14b23 �a14b33
a23b14 � a24b13 a23b24 � a24b23 �a24b33

a33b14 a33b24 0

3
5 : (11)

There are only 16 free parameters in the affine trifocal tensor, and the conditiondet(T��

i ) =
0, for i = 1; 2; 3, is promptly satisfied fori = 1; 2, and since the one-dimensional
null spaces ofT��

1
andT��

2
are the same, the basis of the one-dimensional null spaces

of T��

i ; i = 1; 2; 3, must have a common perpendicular, as imposed in [8] for the general
trifocal tensor.

4 Linear Computation of the Affine Trifocal Tensor

The main drawback of the linear methods for the computation of the trifocal tensor is
the need of a large amount of correct matches for a reliable computation, which is usually
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difficult to obtain. The linear computation with a minimum number of points fails because
the appropriate constraints are not used, and the extra degrees of freedom reduce the error
for the given matches at the expenses of an increase in error for the other points. Since the
affine trifocal tensor is much less unconstrained, it is expected that its linear computation
give a much more reliable result, what will be confirmed by the experiments in Section 5.

Let� = [�1; �2; �3]
T andu = [u1; u2; u3]T be a line and a point in the line, respec-

tively, in the homogeneous image space spanned by matrix~P1. The superscripts0 and00

are appended to features (points or lines) to indicate they are in the homogeneous image
space spanned by camera matrices~P2 and ~P3, respectively.

The linear method for the computation of the trifocal tensor [9, 10] relies on the equa-
tion

ui�0j�
00

kT
jk
i = 0; (12)

that can be used for correspondent triplets of points or lines indifferently. For a triplet
of pointsu $ u0 $ u00, the pointu is selected and two different lines passing through
each one of the pointsu0 andu00 are arbitrarily chosen. Each one of the four pairs of lines
so generated, say�0 and�00, yields an independent equation with the form of (12). If a
triplet� $ �

0 $ �
00 of lines is given, two different pointsu on the line� are randomly

chosen, resulting in two independent equations. Thus, for a general trifocal tensor, one
needs at mostl line correspondences andp point correspondences, where2l + 4p � 26,
to solve for the entries of the tensor. Remember that the overall scale of the tensor is not
important. In the affine case, there are only 16 non-zero entries in the tensor, and thus
l line andp point correspondences satisfying2l + 4p � 15 are enough, in accordance
with [17].

In real situations, (12) will not be satisfied exactly, and the trifocal tensor may be
estimated by a linear least-squares method. In the affine approximation the solution of the
least-squares problem is simplified in comparison to the general case, since it involves the
computation of the eigenvectors of a16� 16 matrix, instead of a27� 27 one.

An important issue is the minimum number of points that must be used in the compu-
tation of the trifocal tensorif the constraints are taken into account. In the projective case
it is shown in [18] that although 5 points provide 20 equations and the constrained tensor
holds only 18 dof, 6 points are necessary for its computation. This restriction appears
in [18] as a characteristic of the algorithm, but the argument below, based on the theory
of invariants [19, 11, chapter 1], shows that this result does not depend on the algorithm
used.

The trifocal tensor, in the projective case, can be used to reconstruct the scene apart
from a 3D homography. Except for particular configurations (e. g. coplanar or collinear
points), there are no projective invariants for less then six points in space [12], and thus 5
points do not provide the necessary information about the projective structure of the triplet
of cameras. A more remarkable result is that the computation of the affine trifocal tensor
cannot be done with less then 4 point correspondences, and thus the linear algorithm, in
the affine case, makes the best possible use of the available information. To state that
it is enough to observe that there is no affine invariant for less then 4 generic points in
space, although 4 points define a tetrahedron whose volume, under the group of affine
transformations, is a relative invariant of weight 1. This is a direct consequence of the
identityAa � (Ab�Ac) = det(A)a � (b� c).
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5 Preliminary Results

5.1 Experiments with Synthetic Data

To evaluate the validity of the proposed model for the affine tensor, some experiments
were done. Firstly, 10 pointsXi, i = 1; 2; : : : ; 10, were randomly placed with an uniform
distribution inside a square box with side 2 and centred at the point (0,0,21). Then, the
points were projected through cameras~P1, ~P2 and ~P3, where the centreCi and the
unitary normal vector to the image plane of camera~Pi, ni, are

C1 = [ 0:0 0:0 0:0 ]T; n1 = [ 0:0000 0:0000 1:0000 ]T;
C2 = [ �1:0 0:5 2:0 ]T; n2 = [ 0:0393 �0:0174 0:9991 ]T;
C3 = [ 0:5 1:0 1:0 ]T; n3 = [ �0:0349 �0:0262 0:9990 ]T:

The centroid of the pointsXi, i = 1; 2; : : : ; 10 isX0 = [ �0:1238 0:0257 21:0217 ]T

and thusmaxi kCi � X0k = 21:0471, for i = 1. This is in agreement with the rule of
thumb that for a good affine approximation the average depth of the scene must be around
10 times less then the viewing distance. The pointsXi and the configuration of the cam-
eras are shown in fig. 2.
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Figure 2: Configuration of the cameras and points. The arrows are the normal vectors to
the image plane of each camera, starting from the respective camera centres. The open
dot is the origin of the image coordinate system, and the stars are the 3D points.

Fig. 3 shows the result of the transfer of lines and points using the affine trifocal tensor.
The tensor was computed with only four point correspondences, and the transfer error is
hardly perceived by the eye.

The effects of noise in image data are shown in fig. 4. In this experiment the position
of the points on each image was perturbed with zero mean Gaussian noise, with variance
in the interval (0,1), and the trifocal tensor was calculated in the projective and affine
cases, both with the minimum number of points. It is evident that the linear algorithm
has an extremely bad performance in the projective case, but gives a reasonable accurate
result if the affine approximation is used.
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Figure 3: Transfer of points and lines. a) The stars are the correct point images, and the
circles are the transfered points. b) The continuous lines are the correct line images, and
the dashes show the transfered lines.
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Figure 4: Stability of the linear computation of the trifocal tensor with minimum num-
ber of points. The dashed line is the projective case (7 points) and the solid line is the
affine case (4 points). Thex axis is the noise variance, and they axis is the mean square
error (in pixels) of the transfered points. As pointed in [5], the linear algorithm fails com-
pletely for the projective case when the minimum number of points is used, but the affine
approximation performs well for realistic amounts of noise.



132 British Machine Vision Conference

5.2 Experiments with Real Data

A further experiment, this time with real data, was also done. From three images of a
calibration grid, lines were fitted to edges found using Canny’s edge detector [2]. Squares
where automatically extracted, and four point matches in the three images were selected
by hand. With this triplets, the affine trifocal tensor was linearly computed and then
used to transfer squares from images 5a and 5b to image 5c. The mean distance from
correspondent vertices of transfered squares to extracted squares is 1.2633 pixels, enough
to produce a correct matching for all squares in the grid.

a) b) c)

Figure 5: The dots show the points selected for the computation of affine trifocal tensor.
The squares in images a) and b) were used to predict the squares in image c).

6 Conclusions

The trifocal tensor plays for trinocular rigs the same role as the fundamental matrix plays
for stereo rigs, allowing recovery of structure apart from a 3D homography [9]. It is an ef-
fective tool for solving problems in several major topics of Computer Vision [1, 14, 17, 6].
The major contribution of this paper is the introduction of anaffine trifocal tensor. This
entity is connected to the general trifocal tensor in the same way that the affine fundamen-
tal matrix [16] and the affine camera [11] are connected to the general fundamental matrix
and the projective camera. The affine trifocal tensor has several advantages over the gen-
eral trifocal tensor: less point and line correspondences are needed for its computation,
that can be reliably and robustly done by a linear algorithm, and it naturally satisfies most
of the constraints of a generic trifocal tensor. The linear algorithm for the computation of
the trifocal tensor [9] was adapted to the affine case, and experiments with synthetic and
real data confirmed the usefulness of the ideas here developed.
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