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Abstract

We present a Kalman tracking algorithm that can track a number of very
small, low contrast objects through an image sequence taken from a static
camera. The issues that we have addressed to achieve this are twofold.
Firstly, the detection of small objects comprising a few pixels only, mov-
ing slowly in the image, and secondly, tracking of multiple small targets even
though they may be lost either through occlusion or in noisy signal. The ap-
proach uses a combination of wavelet filtering for detection with an interest
operator for testing multiple target hypotheses based within the framework
of a Kalman tracker. We demonstrate the robustness of the approach to oc-
clusion and for multiple targets.

1 Introduction

One of the most difficult goals of Automatic Target Recognition (ATR) is to spot incoming
targets at long range where the motion is small and signal to noise is poor, and to be
able to track such targets long enough to identify whether the target is approaching in an
aggressive manner. In [9], some of the current authors determined the best magnification
to zoom in onto a target object while it is still at a long range. However, the important
first-step issue for the detection of the very small target itself was not addressed. We are
interested in locating long-range moving objects in FLIR images where the object may
only be a few pixels in size and has low contrast with its background. Simple methods of
image differencing [11] are therefore not appropriate. We need a more robust algorithm
that is fairly simple to compute, has the potential to run in real-time, and is relatively
immune to noise. We emphasise that template matching methods are inappropriate to this
problem as our targets are very small.

This problem has been addressed by Blostein and Huang [1] who used multistage
hypothesis testing on a large number of hypothesised trajectories. Their approach looks
for changes in mean pixel value through the sequence, but therefore requires trajectory
testing on a per pixel basis. The authors have argued that there is a need for an effective
decision theoretic approach to the detection of small low-contrast objects. In this paper
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we expand upon the ideas of [1], exploiting useful properties of wavelet filters to provide
detection of the motion of these small, low-contrast objects.

An alternative approach has been to try to improve the signal to noise ratio by remov-
ing clutter from the image. This approach has been described by Ffrench et al. [6] using
a 2-D adaptive lattice algorithm for the removal of correlated clutter. Comparisons with
mainly simulated images showed that while better results are obtained, the increased cost
in computational time and algorithm complexity is considerable.

In this paper we exploit useful properties of wavelet filters [5, 3, 12] to provide a
robust method for object detection even when the object size is as small as 6 pixels. We
anticipate that the object size and 2D motion will change during the sequence, as the
target approaches. We have developed a high order prediction mechanism for use with
the Kalman filter [2] to determine regions of interest which reduces the search space for
generating hypothesised tracks. The method generates a hypothesis tree for the motion
of target objects across the image sequence which is pruned using ameasure of interest
operator based upon the Kalman filter error estimates. The interest operator is built upon
the principles described in [4].

The novelty of our approach is that we demonstrate detection of moving objects even
before they become apparent to the naked eye in the image sequence; we successfully
track these objects long enough to estimate their trajectories. We have a multiple target
tracker which enables us to track many targets simultaneously, which enables us to pick
up targets after passing through occlusion and to continue to track them. The processing
time for this algorithm is typically below 1 second per frame without any emphasis on
optimisation of computational time, and the method is highly parallelisable making it
amenable to real time implementation.

In Section 2 we describe the wavelet filtering that detects small low contrast targets. In
Section 3 we describe the Kalman tracker methodology used for multiple target tracking
with automatic addition and removal of targets. In Section 4 we discuss the hypothesis
tree and the interest operator. Finally we present our results in Section 5 and summarise
and conclude in Section 6.

2 Detecting Small Targets using Wavelets

Our emphasis is on the detection of small targets only a few pixels across. For such
objects a wavelet description is most suitable as wavelets encapsulate information on
discontinuities in a very succinct way. We could describe the object in terms of a wavelet
decomposition and then apply a matched filter to it. However, the objects we seek have
very little structure associated with them. The approach we have adopted uses atemporal
filtering of the image sequence using a wavelet filter rather than a spatial filtering across
the image [13].

The classic way to detect moving objects in an image sequence taken with a fixed
camera is by differencing neighbouring images. The problem with this approach is that
many noise variations are also detected, and if our object is small it can prove hard to sep-
arate out the moving target from the noise. We may consider the differencing as applying
a Haar wavelet filter temporally at a fixed pixel location. Therefore image differencing is
a temporal wavelet filter using the smallest known filter size. Use of larger wavelet filters
then provides a way of combining multiple images [11].
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Wavelet filters have been proven to be superior than Fourier methods for detecting
localised high frequency behaviour in an otherwise predominantly low frequency signal
[5, 13, 7, 8]. This property stems from the fact that they are defined as scaled and dilated
copies of a single function (x) having the property:Z

1

�1

 (x)dx = 0 (1)

The wavelet functions are then defined by:

 mn(x) = 2�m (2�mx� n) (2)

wherem is the dilation factor andn represents the shift. Wavelets are associated with a
scalingfunction�(x) via thetwo-scale equation:

�(x) =
P
n hn�(2x � n) (3)

 (x) =
P
n gn�(2x� n); (4)

The finite set of coefficientshn andgn constitute low pass and high pass filters respec-
tively [5]. For our purposes we have used the Daubechies wavelet filtersgn of lengths 4,
6 and 8. These filters then provide the generalisation of image differencing to combining
4, 6 and 8 images in a sequence together. The high pass nature of the filter then detects
the passage of a greylevel boundary across each pixel and so highlights the outline of the
object. This is illustrated in Figure 1.

Figure 1: Output of the temporal wavelet filter using 4 frames. This shows the motion
of an airplane and how the temporal filter captures boundary motion. The body of the
airplane is not found at all.

The advantage of using these wavelet filters is that they are robust to noise. By com-
bining evidence over several frames coherent motion stands out above the noise, providing
a much higher signal to noise ratio.

For each filtered image we compute a channel energy in local neighbourhoods by
averaging the absolute values of the wavelet coefficients. This is then thresholded and
passed through a morphological opening process (erosion followed by dilation) which
removes isolated noise regions leaving just the targets and one or two larger noise regions.
A connected component analysis is then performed to produce a set of connected regions,
which is then passed to the Kalman filter.
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3 Multiple Target Kalman Tracker

Having detected small objects moving slowly across the image, we track the targets using
a Kalman tracker. There will still persist a few random noise targets appearing among
detected objects, so an important part of the Kalman tracking process is to accurately
predict the location of each target in the next frame in order to minimise the number of
false matches and reduce the number of hypothesised trajectories. Since the targets are
small we only track their centres of mass.
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Figure 2: Schematic representation of the Kalman tracker system. For each filtered image
we obtain a list of ‘hopefuls’ (H) from the wavelet filter. We then try to match these
objects with the list of Kalman tracked objects (K). The remaining hopefuls are then
matched with associations (A) in the previous two images, and the rest are left in a list of
candidates (C).

The Kalman state variable in our method comprises of the centres of mass over three
successive frames. We employ a constant acceleration model with state transition matrix:

� =

0
@ 0 1 0

0 0 1
1 �3 3

1
A (5)

This predicts the location of the target in the next frame to fourth order in the frame inter-
val. In the ideal case, combining the observations over four frames with the weightings
given by the above matrix should give zero. We therefore combine the observations over
four frames and use the deviation from zero as the measure of system noise:

!n+2 = zn+2 � 3zn+1 + 3zn � zn�1 (6)

wherezn is the observed position in framen.
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We employ an interest operator to produce the matches between targets in successive
frames based around the Kalman prediction. Some comment is necessary to describe the
initialisation of this procedure. We start by detecting candidate objects (C) in the first
frame, using the wavelet filtered images. We then seek targets in the second frame in the
vicinity of the previous location. Once such an association has been made we identify
this candidate as anassociation(A). In the third frame we use a constant velocity (linear)
prediction for each association. The interest operator is then used to identify whether any
candidates in this frame match the prediction. We describe the interest operator below. If
we can follow the target across three successive frames we then initialise a new Kalman
tracker for this target (K). The system is described by Figure 2.

At present once an object is lost, either disappearing into the noise or through occlu-
sion that Kalman tracker terminates and the list of objects is reduced by one. It would be
a straight-forward extension to allow the prediction to persist over more frames. An alter-
native strategy that we may consider is to combine tracked segments together in a higher
level algorithm searching for potentially aggressive motion. This would prove a more ro-
bust algorithm as it combines evidence over a larger time interval when identifying target
trajectories.

4 Hypothesis Testing - the Interest Operator

The use of the wavelet transform combined with the Kalman filter provides a very robust
method for tracking small targets. Even so, each triplet of targets in successive frames
will generate a new initialisation of a Kalman tracker. It is therefore essential that the
number of hypothesised trajectories is maintained at a comparable level to the number of
Kalman tracked objects.

To achieve this we have used an interest operator using the same design principles
as that in [4] to prune the search tree. This operator is based upon the error covariance
generated by the Kalman filter, to predict anticipated errors in the measurements. If the
matrixH maps the state space into measurement space,x̂� is the apriori state estimate,
andP� is the normal error covariance in the state prediction, then the expectation of
E(z�Hx̂

�)(z�Hx̂
�)T isHP�HT . This matrix is updated during the standard Kalman

update cycle, and thus provides estimates of the region around each prediction where we
may expect to find the measurement(�x; �y). Since the motion of these targets is small,
the predictions are fairly accurate and so this effectively reduces the search space. The
interest operator is defined as:

I(�x;�y) =Me�K (7)

where

K = ��

s
(
�2
x
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+

�2
y
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)

andM is the number of pixels associated with the candidate from the connected com-
ponent analysis. The terms�x;�y represent the differences in thex andy coordinates
between the target’s centre of mass as predicted by the Kalman tracker and the observed
centre of mass of a candidate object. The constant parameter� is a measure of how far
away from the prediction a particular measurement may be to still hold some interest.
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Figure 3: Profile of aircraft in frame 32 of the sequence. It is only 6-7 pixels across
throughout the early part of the sequence.

This has been fixed at 2 standard deviations. The interest is biased towards larger candi-
dates that fit the prediction through the measureM . This also takes account of the fact
that many targets can be expected to become larger as they approach.

The interest operator guarantees that virtually all hypotheses apart from the correct
one have a very low interest level and are quickly rejected. The longer the object is
tracked well the more robust the interest operator becomes in identifying the true object
in the presence of other close and/or high contrast decoys, because the error behaviour
itself is modelled more consistently.

5 Experimental Results

We have used our algorithm on a sequence of FLIR images taken by a fixed sensor looking
out over a plain. In the sequence an aircraft is approaching and there is a road in the middle
distance with cars travelling along the road. Our aim is to try and detect all these moving
objects and to track them at least long enough to determine whether their trajectories are
hostile. All the objects are low contrast and are hard to pick out in the image sequence.
In Figure 3, we show an enhancement of the aircraft from frame 32 of the sequence.
We show results from our tracker algorithm in Figure 4 which shows the scene from the
camera and gives an impression of the size of the targets being tracked. In this image the
airplane appears near the top left of the image, and we are tracking 3 cars along the road.

The tracking of the cars along the road is more intermittent than the aircraft due to oc-
clusion by bushes and hedges along the road. Near the start of the sequence, however, we
manage to track two cars which approach each other and pass by. We successfully track
these two cars through approach (in Figure 5(a)), on passing (5(b)), and on separation
(5(c)).

Towards the end of the sequence the aircraft passes overhead and is quite large. The
tracker follows the centre of mass, but by using the connected regions we have then com-
puted a correlation with the greylevels themselves to produce the displayed images. The
connected regions, however, produce an accurate description of the actual shape of the
target. Although this cannot be seen in the early part of the sequence, in Figure 6 we
show the connected region superimposed on frame 65 of the aircraft, and alongside the
original greylevel image. This shows how well the connected region defines the shape and
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Figure 4: Multiple objects: 1 airborne craft and 3 vehicles

(a) (b) (c)

Figure 5: Two approaching cars approaching,passing and separating
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hence orientation of the target as it approaches. This may also provide useful information
in determining target pose - an important ingredient in determining whether it is hostile.

(a) Connected Region (b) Original Image (En-
hanced)

Figure 6: Intensity profile of target at close range (b) and the connected region obtained
from the wavelet transform following morphology (a).

To get an idea of how well the targets are tracked across the whole sequence we have
produced an MPEG movie, downloadable from the WWW site:

http://www.ee.surrey.ac.uk/EE/VSSP/demos/smallobj/index.html
Only by this means can a full appreciation of the tracker be made. In order to give some
idea of performance we have combined the targets throughout the whole sequence and
superimposed them onto the last image. This is shown in Figure 7 which gives a clear
idea of how the aircraft and cars moved through the sequence and how well we managed
to track them. This illustrates the speed of the aircraft relative to the cars as the aircraft
trajectory marked is disjoint.

6 Conclusions

Our algorithm combines the discriminating power of the wavelet transform with a Kalman
filter to detectandtrack the motion of small, low contrast objects in image sequences. We
have demonstrated the algorithm using a sequence of FLIR images which incorporate
slow and fast motion of an approaching aircraft as well as the semi-hidden motion of cars
along a country road. We have shown that we can track a substantial part of this motion
even though the targets have very poor signal to noise and may become occluded.

The method we have described is highly parallelisable since we filter each pixel in the
image sequence separately, and the multiple Kalman targets are all independent. Although
this has not been parallelised in any way, the computational time for our sequence of 75
images was around 3.5 minutes on a Ultra SPARC 450 machine. This corresponds to 2.5
seconds per frame.
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Figure 7: The whole sequence of tracked objects superimposed upon the last image of the
sequence to give an idea of the motion and shift in target sizes.

The main drawback of the method at present is that for longer wavelet filters the
targets become smeared over a larger region of the images and so locality of the targets
is lost. We have overcome this deficiency by performing a correlation analysis with the
image greylevels when generating the results. This does not, however, always do justice
to the tracker algorithm. In the cases presented, our targets are always reasonably small
and so the problem has not been too important.

We believe that the method is robust in that the target is always tracked even when
decoys are employed. In order not to be overcome by too many trackers active at the
same time we have introduced an interest operator that prunes the tree of hypothesised
trajectories.

The method also provides a ‘shape’ of a region enclosing the target object, which
provides information about the manoeuvring of the aircraft and its change in pose. Shape
characterisation could be achieved by utilising higher moment information about the tar-
get’s centre of mass. Shape information could conceivably be incorporated with the inter-
est operator function, or retained for further analysis by a subsequent pattern recognition
device.

The method can be combined with noise reduction algorithms and/or in conjunction
with the control mechanism of the tracking IR camera. For example, it could be used



608 British Machine Vision Conference

to zoom onto the target [9] to obtain more detailed information to complete the object
recognition process. It would therefore also be part of the overall control of the vision
process [10].
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