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Abstract

In our previous work on image registration we developed a novel image
registration method, called the Intensity Combinatorial Minimization Method
(ICMM), that has many appealing features. Two important features of this
method is that ICMM is computationally efficient and has the unique feature
of being invariant to the image processed by an injective function. In this
paper we extend the use of ICMM for template matching. The extraction of an
optimum template is investigated. Optimization of both template location and
template size are addressed. We introduce the Intensity Variation Number,
which is an image information measure that is strongly related to entropy. We
show that optimization is a function of the Intensity Variation Number.
Results of tests conducted on real images with noise are presented that
support our theories.

1    Introduction
Image registration and template matching is an area of active research in computer and
machine vision. The importance of registration and template matching are not limited to
this field but are also important in many other fields because of their frequent
occurrences. They arise in the domain of object recognition [1], multi-spectral image
analysis [2], aerial image analysis [3], meteorology [4], medical imagery [5], and many
more [6]. The main goal of the template matching process (which is at the core of image
registration) is to find the translational, rotational and scaling offsets between the
template and the image.

In our previous work on image registration [7] [8], we had developed an efficient
area-based image registration method, called the Intensity Combinatorial Minimization
Method (ICMM), that has many appealing features. In addition to being computationally
efficient, where only simple calculations are required, the method has the unique feature
of being invariant to the image (or the template) processed by an injective (one-to-one
mapping) function. Tests conducted with this method produced good overall registration
results indicating that this method is more efficient and robust than other traditional
registration methods. In this paper we investigate the extraction of an optimum template.
Optimization of both template location and template size are addressed. We will show
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that optimization is a function of the Intensity Variation Number, which is an image
information measure that is strongly related to entropy.

This paper is organized into six sections as follows:
1. Introduction
2. Literature Review
3. Description of the Intensity Combinatorial Minimization Method (ICMM)
4. Optimum Template Selection
5. Experimental Results
6. Conclusion and Future Work

2    Literature Review
Image registration methods can be classified into two classes; Area-Based Methods and
Feature-Based Methods. In area-based methods, a sub-region of one of the images is
taken as the registration template, which is swept over the other image to find it’s
location by maximizing (or minimizing) a similarity metric. Area Correlation is the most
common area-based method employed for registration. The similarity metric used here is
the area correlation of the two images. The location where the maximum correlation is
found is taken as the translational registration offset between the template and the image.
Although the Area Correlation Method is quite robust for most applications, it's main
disadvantage is that it is computationally intensive. Another template matching
technique is to subtract the template from the image, as the template is swept over the
image, and observe the resulting matrix. The resulting matrix is then searched for the
minimum which is taken as the point of registration. This method is called the Sum of
Absolute Difference Method. Our method, the Intensity Combinatorial Minimization
Method (ICMM) [7] [8], is based on a new metric for detecting similarity between the
template and the image (discussed below in more detail).

In feature-based methods (also known as point-based methods), the images are
initially processed by some feature extraction process where prominent features are
extracted. Correspondences between extracted features of the two images determines the
registration point. The method of using fiducials constitutes these methods in the most
primitive form [9]. A point based method that matches a pattern of points were
described in [10]. Here a simple approach to point matching is performed by measuring
the displacement of feature points and counting the number of displacement
occurrences. In [11], a relaxation point pattern matching method is used. A figure of
merit is assigned to each pair of matched points according to how closely other pairs in
the set match. Stockman, et al. [12] used a clustering approach to match image features
between the image and the model, based on local evidence. Goshtasby [13] used
normalized invariant moments to match images that are offset rotationally. Cox et al.
[14] presented an iterative procedure matching line segments to find correspondences
between the image and the template. Viola [6] recently aligned images by maximizing
mutual information between the image and the model.

3    Description of the Intensity Combinatorial
Minimization Method ( ICMM )

The Intensity Combinatorial Minimization Method (ICMM) was described in [7] [8]. A
brief description of the method and its features is given here. ICMM is a registration
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method based on a new metric for detecting similarity between images. The similarity
measure is based on the simple fact that images of the same scene should appear similar.
This implies that if an intensity of a point of an object (i.e. its grayscale value) in one
scene changes to a different value in another scene, then all points that are at the same
intensity (or most of them) should also map into the same new grayscale value (or a
finite set of possible grayscale values). In other words, the variation of the intensity of
all points with a certain grayscale value in the first image to that of the second image
should be small.

3.1    ICMM Definition

ICMM locates a template match by sweeping the template over the image, and
examining the overlaid pixels to calculate the registration matrix R. This is done by
counting the number of distinct combination pairs of the intensity of the template and
the image window. R is then searched for the minimum value which corresponds to the
registration and match point. ICMM is formally defined by,
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The registration point is then found at the point x = {x | min{R(x)}}.

3.2 Features of the ICMM

ICMM exhibits several appealing features for registration applications: low noise
sensitivity, invariance to injective functions processing, computationally efficient, good
results when small templates are employed, a performance increase with an increase in
the number of image intensities, as well as other features. The method’s invariance to
the image being processed by an injective function is unique.

4   Optimum Template Selection
In this paper we investigate two important aspects of template optimization; size and
location. The problem of template size selection for template matching (and image
registration) is of major importance as it dictates the time required for matching (and
registration). Matching may fail if a small template is employed due to insufficient
matching information. Matching may also fail if a large template is employed, where the
template would not fully fit in the image except at a few number of locations. While a
template ½ the size of the image might seem to be a suitable compromise, it really is not,
as it results in the most computations required for registration.

Given a template size of k � l and an image size of m � n, the number of operations
(N) required for sweeping the template across the image is: N = kl(m�k+1)(n�l+1). N
attains a minimum at the edges, (k = l = 0,  k = m +1 and l = n+1). The maximum value
of N occurs at the midpoint (k = ½(m+1), l =  ½(m+1)). Since there is more freedom and
control in selecting a small template size than a large template size, the optimum
template size is thus the smallest possible template size that will produce adequate
matching results. Template location selection is critical since the template must be taken
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in a region of the image that contains “a lot of information”, as this will produce more
accurate results. The definition of “a lot of information” is a template that contains
sufficient detail for it to be found (uniquely if possible) in the other image.

4.1   The Intensity Variation Number

The image intensity variation number (
) is a measure of image information that -we
show below- is strongly related to entropy. For grayscale images, 
 is measured by
counting the number of distinct intensity values in the image‡,
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 takes on values between 0 and L-1, where L = 2b is the maximum number of intensity
levels in the image and b is the number of bits used to represent the image. Thus for 8-
bit grayscale images, 255 � 
 � 0. The normalized intensity variation number (
 ) is
defined by,
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Values of 
 lie between 0 and unity. The significance of 
  is that as 
  becomes large
and approaches unity, indicating the image has more distinct gray levels appearing in the
image, the possibility of more information contained in the image increases.

The intensity variation neighborhood number (�) is a local image information
measure. For a n � n image neighborhood size, �n is defined by counting the number of

distinct intensity values in the neighborhood. Thus, at any image point,

� �� n I S( ) ( ),x x y
y
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The maximum �n value found in the image, for a n � n image neighborhood size, is

defined as the image intensity variation neighborhood number (
n),


n = max(�n) (7)

For grayscale images, 
n represents the maximum number of distinct intensity values in

any n � n image neighbourhood.
Similarly the normalized intensity variation neighborhood number (� n) and the

normalized image intensity variation neighborhood number (
n ) are defined,

respectively by,
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Note that for any image, a value of 
 = 1.0 indicates that all possible intensity levels are
present in the image, and


 � 
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  � 
 n � � n (9)

                                                
‡ For color images, � is measured by counting the number of distinct colors in the image.
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4.2   The Intensity Variation Number and Entropy

Image entropy (H) is a measure of the information embedded in a given image and is
measured by quantifying the image intensity histogram,
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where h denotes the image intensity histogram and L is the number of gray levels in the
image. The Intensity Variation Number (
) can also be described as a function of the
histogram,
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Hence, a great correlation exists between image entropy and the image intensity
variation number. However, using the image intensity variation number has the
advantage of being easier to calculate than entropy.

A similarity between local entropy and the intensity variation neighborhood number
also exists. Local entropy is a measure that measures the amount of information present
in an image sub-region. For a n � n image neighborhood size, the local entropy (Hn) at
location x is measured by,
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where,h* denotes the image intensity histogram in the neighborhood of x. Similarly, the
intensity variation neighborhood number (�) can also be described in terms of the local
image histogram,
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4.3   Optimum Template Location and Size

Hence from above we arrive at the following conclusions:
i. For a given template size (n � n), the optimum template location is at the image

location that maximizes the number of distinct intensity values, i.e. at 
 n.

ii.  The optimum n � n-template size for a given image is the smallest template size
that maximizes 
 n.

The above criteria applies in the absence of noise. However, in the presence of noise,
template size selection is dictated by the amount of noise present in the image, as there
is no precise method which can measure the amount of true information present in the
image.

5   Experimental Results
Tests were conducted on the ten image scenes shown in Figure 1. Some important
properties of these images are summarised in Table 1. The images differ in size and in
the amount of information available. Entropy values range from 5.684 bits up to 7.862
bits. 
 values vary from 124 distinct intensity levels to 253 intensity levels. Figure 2
shows a line chart displaying the images at their corresponding 
 values.
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5.1   Optimum Template Location

Figure 3 shows 
 plotted against image entropy for the ten images. The correlation
coefficient between the two measures are very high (0.81) indicating that 
  can indeed
be used as an information measure. This can be exemplified further by calculating 
n
for different n values and calculating the maximum neighborhood entropy values for
these points and examining the relation between the two measures. Figure 4 which is a
plot of the maximum neighborhood entropy vs. neighborhood entropy at points of 
n
for n = {5, 7, 9, 11, 13, 15, 18, 20, 24, 28, 32}. We see that locations that maximize the
number of distinct intensity levels for a given sub-image size (i.e. 
n) do indeed

correspond to locations of maximum entropy. Hence, the optimum template location
corresponds to the location of 
n as this maximizes the amount of information present.

Figure 1: Test images: (a) Air, (b) Building, (c) Boat, (d) Flower, (e)
Forest, (f) Mountain, (g) Telephone, (h) Airplane, (i) Park, (j) Rose.

      Rose    Mountain Telephone Flower Boat
Forest Air         Park      Airplane       Building

                 �     �   �      � ��              �� � �
� 100 200 255


 0.392 0.784 1.0

Figure 2: A line chart displaying the test images at their corresponding 
 values.

(a) (b) (c)

(d)

(e) (f) (g)

(h) (i) (j)
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Table 1: Test Image properties
Image Size Entropy 
 
 log2(
)

Air 128�128  6.872 159 0.624 7.313
Building 384�256 7.054 251 0.984 7.972
Boat 420�256 7.862 253 0.992 7.983
Flower 256�341 6.812 222 0.871 7.794
Forest 128�128 5.684 124 0.486 6.954
Mountain 341�256 7.161 199 0.780 7.637
Telephone 128�128 7.366 202 0.792 7.658
Airplane 376�256 7.381 219 0.859 7.775
Park 128�128 6.753 172 0.675 7.426
Rose 341�256 6.391 163 0.639 7.349

        
Image Entropy          Maximum Entropy

      Figure 3: 
  vs. image entropy for Figure 4: Variation of the maximum
     the ten test images. neighborhood entropy vs. neighborhood

entropy at points of 
n.

5.2   Optimum Template Size

In this section we study the extraction of the optimum template location and size under
two conditions; when no noise is present and in the presence of noise.

5.2.1   Noise Free Images
To investigate the optimum template size,
templates of different sizes were studied.
Eleven n � n templates of sizes n = {5, 7,
9, 11, 13, 15, 18, 20, 24, 28, 32} were
extracted at points of 
n for each image.

These templates were matched to the
original images to see if they matched
correctly to the original images. The
results obtained show that correct match
was not found for any template when n =
5, and all templates of sizes n � 9
matched correctly. These results can be
explained by examining Figure 5, a plot
of the ratio of the intensity variation neighborhood number to the image intensity
variation number (
n/
). Correlating this plot with the above results, indicates that

templates matched correctly when values of 
n/
 were larger than 0.25, while

template size, n

Figure 5: A plot of 
n/
 for different 

    template sizes.

�

Neighborhood
Entropy at points

of �n

�n/�
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templates failed to matched correctly when 
n/
 were smaller than 0.25. Hence,

sufficient data for matching is possible only when 25% or more of the actual number of
intensity levels of the original image are present in the template.

5.2.2   Noise Images
To investigate the optimum template size in the presence of noise, tests were conducted
on noisy variation of the original test images. White noise was added to the original
images in noise quantities from 10% to 90% in 10% increments†. At each noise level 10
different noise images were generated for each original image, producing 90 noise
variations. The templates employed in section 5.2.1 above were then matched to the
noise images using ICMM.

To measure the goodness of matching
at each noise level, a matching
performance metric (�) is employed to
measure the matching efficiency at each
level. � is defined as the ratio of the
number of noise images with correct
template matches to the total number of
noise images. The matching results for
the Air image are shown in Figure 6
where curves of constant �, for ��0,
��0.5 and � = 1.0, are displayed. At a
template size of n = 5 the template did not match correctly. At n = 7, a correct template
match was possible when no noise was present, but when noise was present,
performance degraded with increase noise level: at 10% and 20% noise level, the
matching performance ��� was 0.8 (i.e. the correct match was found in 8 of the 10 image
noise variations at this noise level). At a 30% noise level � degraded further to 0.5, and
at a 40% noise level � = 0.2. At noise levels above 50%, matching was not possible
(�=0.0). At n = 9, � has better performance: � = 1.0 at noise levels up to 30%,
decreases gradually at noise levels between 40% and 70%, and matching fails at noise
levels of 80% and beyond. � continues to increase as n increases, and at a value of
n=20, template matching success is possible at a noise level of 90% (� = 0.1). At n = 24,
further improvement in � is evident: at a noise level of 90% � has increased to 0.8.
Finally at a value of n = 32, correct template matching is possible at all noise levels.

Similar analysis can be derived for the remaining images. Table 2 shows common
values of � for all images. From this table, several important observations can be stated
about the overall matching results:
1. The matching performance indicates two distinct image groups. The first group

consists of the Air, Forest, Park and Rose images. Successful template matching for
these images start at a template size n = 7, and by n = 32, � = 1.0 at all noise levels.
The second group consists of the remaining six images (Building, Boat, Flower,
Mountain, Telephone, and Airplane). The matching performance for the second
group lags behind the first group where successful template matching starts at size
n=9, and by n = 32, � = 1.0 at noise levels up to 80%. This difference in
performance of the two image groups can be explained by referring back to Figure 2

                                                
† The noise percentage refers to the percentage of image pixels that had noise added to it.

size, n

Figure 6: Curves of constant � for the 
    Air image.

Noise,
%

� � 0
� � 0.5
� = 1.0
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and examining 
 for the various images. All images of the first group have 0.675
� 
  while all images in the second group have 
 � 0.780. Hence, a template of a
given size, n, from the first group will have a greater �  value than those of the
second group and a higher rate of successful matching.

2. Template sizes of n � 18 have � = 1.0 for all noise levels up to 50%.
3. � > 0 for all noise levels when n � 20, for all images except the boat image (where

for the boat image � > 0 for all noise levels only when n �  28. This is explained by
noting that this image has the largest 
 , where 
 = 0.992).

4.   It is obvious that the matching performance is sensitive to the noise level content.
By categorising the noise content into categories based on noise, we can arrive at
general conclusions (see Figure 7):
� No noise (noise level 0%): The optimum template size for this level is n = 9, as

this size assures correct matching every time (� = 1.0).
� Low noise content (30% � noise level > 0%): The optimum template size for

this level is n = 15, as this size assures correct matching every time (� = 1.0).
� Medium noise content (60% � noise level > 30%): The optimum template size

for this level is n = 20, as this size assures correct matching every time (�=1.0).
� High noise content (80% � noise level > 60%): The optimum template size for

this level is n = 24, as this size assures correct matching every time (� = 1.0).
� Ultra-high noise content (noise level > 80%): The optimum template size for

this level is n > 32.  A template size larger than 32 will have � � 0.7 and will
most likely be close to � = 1.0.

n 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%
5
7 � = 0
9
11
13 � > 0
15
18
20
24 �=1.0
28 � > 0
32

Figure 7: Overall Matching Results for all Test Images

Table 2: Optimum Template Size for Various Noise Contents
Noise Content None

(%0)
Low

(>0%–30%)
Medium

(>30%–60%)
High

(>60%–80%)
Ultra-high
(> 80%)

Template size, n 9 15 20 24 32

6   Conclusions and Future Work
The image intensity variation number (
) is a measure of image information that is
strongly related to entropy. For grayscale images, 
 is measured by counting the number
of distinct intensity values in the image. Similarly, the intensity variation neighborhood
number (�) is a local image information measure. For a n � n image neighborhood size, 
�n is defined by counting the number of distinct intensity values in the neighborhood.
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The optimum template location corresponds to the location that maximizes the
amount of image information for a given sub-image size. This location is the location of
the image intensity variation neighborhood number (
n). The optimum template size is

dependent on the amount of noise present in the image. This was verified by conducting
tests on 910 images from ten real image. The results indicated that when no noise was
present a template size of n = 9 (i.e. 9 � 9), was sufficient for correct template matching
and registration. When the noise content in the image was low, a template size of n = 15
was necessary for matching. When the noise content in the image was at a medium level,
a template size of n = 20 was necessary for correct matching. Images with higher noise
contents required a template size of n = 24 for correct template matching, and images
with ultra-high noise content required a template size of at least n = 32. Our future work
will concentrate on extending the ICMM method further by concentrating on an
important aspect: scale and rotation invariance.
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