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Abstract

A highly successful active contour implementation, for the automatic seg-
mentation of cervical cell nuclei, is shown to lend itself well to a framework
that further increases its success rate. The method is based upon measuring
changes in the final contour as the one parameter that governs its behaviour is
varied. Only one object of interest is contained in the image, but as artefacts
often appear as well, the contour varies with the parameter as it finds different
solutions. In contrast, simple images with no artefacts are very stable. There-
fore a stability measure is calculated and each image is classified according to
its degree of ‘difficulty’. A system can then choose at which level to operate
to ensure only high quality examples are processed after segmentation.

1 Introduction

The completely automatic segmentation of Papanicolaou stained cervical cell nuclei has
been the subject of active research for many years. The main frustration that research
groups had encountered was due to the fact that it is a deceptively difficult problem. The
images often appear trivial to segment; however no one technique had been found to per-
form suitably well over a large data set. This was mainly due to the fact that the cytoplasm
is also stained which greatly reduces the nucleus-cytoplasm contrast as well as producing
many artefacts in the images. An active contour method has recently been found to be
highly suited to this application with a success rate of 99.64% correct segmentations on a
data-set of 20,130 images [1]. This is a far superior result to those that have been reported
in the past [8][9][5] and appears to finally demonstrate the feasibility of a completely au-
tomatic segmentation procedure for this task. However, there remains the possibility of
sample contamination from the few remaining failures that the algorithm produces. In or-
der to prevent this, the need would still exist for a human to view the output of this stage,
undermining its utility in a practical system. Fortunately, the segmentation algorithm
lends itself well to the implementation of an error checking and ‘segmentation stability’
stage which enables a further increment upon the success rate, effectively removing this
requirement for human supervision.
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2 The Segmentation System

The use of active contours in bio-medical applications is well established and global min-
imum searching methods have been found to be particularly useful in the presence of the
many artefacts usually associated with these images [3][4][6]. Here, a dynamically pro-
grammed search method was implemented which was based upon a suggestion in [7]. A
search space is first set up within the image, bounded by two concentric circles centralised
upon a point found by an initial rough segmentation. This search space is then sampled by
discretising both circles and a number of radii joining them. Every possible contour that
lies upon the points of the search space is then considered and an associated cost function
is calculated. This cost represents the traditional snake property of a balance between
the contour’s smoothness and how much it lies upon pixels of high image gradient. This
balance is controlled by a single regularisation parameter,� 2 [0; 1]. By choosing a high
value of�, the smoothness term dominates which may lead the contour to ignore impor-
tant image edges. A low value of� will allow sharp corners to develop in the contour as
it attempts to lie upon high gradient areas, which may not necessarily be on the desired
objects edge. Once every contour has been evaluated, the single contour with least cost is
chosen as the solution. As the focus of this contribution is on the development a subse-
quent error checking stage, the reader is referred to [1] for a fully detailed explaination of
the above techniques.

3 Segmentation Accuracy

The single parameter which affects the behaviour of the algorithm,�, was chosen to be
0.8 after viewing its effect upon a small sub-set of the images. All of the images were
then segmented and subsequently verified by eye. Of the 20,130 images, 99.64% were
found to be correctly segmented. Two main classes of failure were identified. Forty
four of the failures were due to the nuclei lying close to the cytoplasm boundary. As
the background/cytoplasm contrast was much greater than that of the nucleus/cytoplasm,
the contour tended to be attracted to the background/cytoplasm boundary, causing the
segmentation errors. Twenty-six of the failures were caused by the inappropriate choice
of � for that individual image (they all subsequently produced correct segmentations with
different values of�.) The remaining three images were found to fail at all attempts —
caused by the incorrect setting of microscope focus and illumination. The failures due to
the presence of the background in the nucleus images were deemed to be preventable at
a previous cell-finding stage. Here, the location of the cytoplasm/background boundary
is known and can therefore be prevented from appearing in the images presented to the
active contour algorithm. The problem of the choice of� is therefore the major issue.

4 Lambda Sensitivity

For the majority of relatively simple images with little ambiguity in the true location of
the nuclear boundary, the final segmentation can be fairly insensitive to� over a wide
range of values (figure 1).

By contrast, ‘difficult’ images (even for humans) produce very different contours de-
pending upon the choice of� (figure 2). These images usually contain artefacts near or
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Figure 1: Segmentation results showing insensitivity to different values of�. (a)� = 0:1
(b) � = 0:5 (c) � = 0:9

(a) (b)

Figure 2: Example of an image which is not stable over a range of� (a) � = 0:5 (b)
� = 0:8

on the nuclear boundaries that make the ‘true’ border hard to find. Another example of�

sensitivity is shown in figure 3. In this case, the nucleus has been folded or has been dis-
torted in some way and contains a sharp corner. The examples in figures 1, 2 and 3 show
that no single value of� is capable of accurately segmenting all of the images. They do,
however, indicate that different examples have a varying ‘sensitivity’ to�. Simple images
result in a contour which remains fairly stable over wide ranges of� (figure 1) whereas
harder images cause the contour to move or switch with� (figures 2&3). Therefore, if a
measure of an image’s stability with varying� could be gleaned, then a method exists for
subsequent stages to only choose ‘easy’ images to segment. In this application, the prun-
ing of the data in order to enhance the sample has no effect upon the final classification.
This idea naturally has similarities with previous methods that have used a number of dif-
ferent segmentation algorithms upon one image. A choice is then made whether to accept
or reject the segmentation depending on how well they all agree on the solution [9][2].
However, the advantage here is in the use of the exact same framework and initialisation
for each run, with simple comparison of results. In order to pursue this method, a sub-set
of 772 images was segmented at values of� from 0.0 to 1.0 at 0.1 increments. The results
are plotted in figure 4.

With � set at 0.0, the smoothness constraint is completely ignored and the point of
greatest gradient is chosen along each search space radius. Figure 4 shows that for 65.65%
of images, all the points of greatest gradient actually lie upon the nucleus/cytoplasm bor-
der (figure 5(a)). For the remaining 34.35% of images, a large gradient due to an artefact
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Figure 3: Folded or distorted nucleus (a)� = 0:8 does not allow the contour to bend
enough to capture sharp corner (b)� = 0:5
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Figure 4: Percentage of successful segmentations versus�

or darkly stained chromatin will draw the contour away from the true border (figures
5(b),(c)). As� is increased, the large curvatures present in figure 5(b) and (c) increase the
energy of these contour configurations and they therefore become less probable. Figure
6(a), (b) and (c) show how the contour is affected by increasing�. Between� = 0:3
and 0:8, the curve in figure 4 flattens out with high success rates. The plateau is re-
markable broad, demonstrating that the method is well-suited to this application. As�

increases beyond 0.8, some sharper nuclear borders become discriminated against (figure
7). However, the rare occurance of this type of nuclear feature is reflected in the small
drop in success rate to 94.3% at� = 0:9.

5 Image grading

It was observed from the data that the performance was monotonically increasing for0 <

� < 0:8 with the solutions for�1 being a strict subset of solutions for�2, where�1 < �2.
Although this was true for the 772 images tested, it could not be assumed true for every
image. However, it was proposed that any image not satisfying this condition would be
a sufficiently rare event. Therefore, by segmenting any image at a highly probable value
of � for success, say 0.7 (middle of the plateau) and again at 0.0, a similarity between
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Figure 5: Examples for� = 0:0 (a) largest gradients occur on the nucleus/cytoplasm
border (b) dark artefacts generate larger gradients than the border (c) darkly stained chro-
matin generates larger gradients than the border.

(a) (b) (c)

Figure 6: The effect of increasing� (a)� = 0:1 (b) � = 0:2 (c) � = 0:3

the resulting contours would indicate a high level of stability (figure 1). This image could
then be classified a level 0 image, or a ‘very easy’ image to segment. Lack of similarity
could lead to a second run at� = 0:1 and another comparison made with the first contour
at � = 0:7. Similarity would lead to a classification of level 1 and so on until either the
risk of including an image which fails at all attempts is too high, or� = 0:6 is reached.

6 Contour comparison

As the contours to be compared were the result of the same algorithm and indeed the
same search space in the image, the comparison between the two contours was trivial. The
distance between each chosen point on each of the search space radii for each contour was
calculated and the maximum absolute deviation (MAD) returned. For the subset of 772
images, the minimum MAD was evaluated for the transition between a good segmentation
and a bad segmentation as� was varied. This resulted in the threshold of 2.3 pixels to be
set. Any two contours whose MAD was greater than this threshold was deemed as ‘not
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Figure 7: Bend at the top of the nucleus is deemed to be too sharp with� = 0:9

similar’.

7 Grading Results

From the remaining database, a test set of 18,718 images was graded between a level 0
and 6 using the method described above. The percentage of the total number of images
included in each level was calculated and the number of the known failures in each level
noted. The results are summarised in table 2. From the table, it can be seen that by

Level 0 1 2 3 4 5 6
% Images at level 54.65 73.12 80.53 85.93 90.07 92.98 95.83

No. of failures 0 0 1 3 9 14 19

Table 1: Level of segmentation ease with percentage of images at each level and the
number of failures included in that level.

grading the images it is possible to achieve a 100% accuracy by choosing level 0. In
this case approximately half of the images would, however, be discarded. By increasing
the acceptance level to one, 73.12% of the images would be accepted still with 100%
accuracy.

8 Conclusions and Future Work

A dual-search based active contour was implemented and tested upon a large dataset of
cell nuclei images. The remarkable success rate of this algorithm has been shown to
have the potential of further improvement by a method of grading the images under ‘ease
of segmentation’. Naturally the reported 100% accuracy rates cannot be expected to be
maintained in practice, however it is expected that only a very few incorrect segmentations
would be missed. This is because an image is required to be very stable over a large range
of � values. As problem segmentations are mainly caused by artefacts distorting the
contour away from the nucleus border, they often lie in areas of high image energy which
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makes them unstable. The threshold for the comparison of two contours was calculated by
evaluating the maximum absolute deviation (MAD) between the good/bad segmentations
of the subset. As this occurred between two consecutive values of�, it may not be the best
choice for a practical system. This is because as� is increased from a bad segmentation
at, say, 0.1 to a good segmentation at 0.7 then the contour may creep towards the point
where it was declared as ‘good’, with all previous attempts having been declared as ‘bad’.
Therefore, if it was decided to run the system at level 1, then the threshold should be re-
calculated as the minimum MAD between good/bad segmentations at 0.1 and 0.7. This
would result in a less severe threshold and reduce the number of correct segmentations
being discarded.
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