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Abstract

We propose a new stereo matching algorithm which computes the depth and
surface orientation simultaneously. While area-based stereo matching is an
essential technique in the recovery of the dense 3D shape, conventionally
it uses square windows based on the implicit assumption that intensity pat-
terns surrounding corresponding points have no deformations between im-
ages from different views. In practice, however, the local surface orienta-
tions deform the intensity patterns and such deformations often give rise to
poor estimation of the 3D shape. To solve this problem, we formulate a
new algorithm that allows a matching window to locally deform according
to the surface orientation, which we propose to compute directly from inten-
sity gradients within the window. Through experiments we demonstrate that
our algorithm indeed realizes more precise recovery of the 3D shape than do
conventional ones while being applicable to various images.

1 Introduction

Recovering a 3D shape of an object or a scene has been a central issue in computer
vision. In order to extract 3D information from 2D images, it is effective to use multiple
images captured from different viewpoints. The essential problem is to find corresponding
points between different images. When the viewing geometry is already known, i.e.,the
geometric relationship between the images including the camera position and orientation,
we can robustly recover the 3D shape since it is then attributed to a 1D search problem by
exploiting the geometric relationship. This is called the epipolar constraint and the image
matching technique using the epipolar constraint is often called stereo matching.

In recent decades numerous stereo matching algorithms have been proposed[18]. They
can roughly be classified into two categories; feature-based and area-based. In the feature-
based ones, features such as edges, lines or corners are extracted and matched. Although
some robust depth estimation is often acquired using these approaches, the output depth
information is inherently rather sparse. On the other hand, the characteristic of the area-
based approaches is to recover the dense 3D shape by correlating the grey levels within
the window around each pixel between different images. In this paper, for the purpose of
dense 3D shape recovery, we consider the area-based approaches.

Conventional area-based stereo matching employs a “square window” to measure the
similarity or non-similarity among the different image regions. This is based on the im-
plicit assumption that the intensity patterns surrounding the corresponding points have
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no deformations between images from different views. In general, however, as the local
intensity patterns deform according to both the viewing geometry and the local surface
orientations(or the depth gradients), the resulting deformations are not negligible in the
stereo matching. Whereas the former deformation parameters are determined globally
for the entire image, the latter parameters vary with image region. Therefore, a window
must be locally deformed depending on the surface orientation. In other words, the con-
ventional approaches have been associated with recovery of depth only, assuming that
the 3D surface is locally fronto-parallel, that is, the local 3D surface and the image plane
are parallel to each other. Although this assumption is valid if the window size is small
enough, too small a window does not cover sufficient intensity variation to establish the
correspondence, resulting in poor depth estimation.

This paper presents a new stereo matching algorithm that computes the depth and sur-
face orientation simultaneously. In the proposed algorithm the local 3D surface is approx-
imated by an arbitrary plane, not necessarily fronto-parallel, and a shape of a window is
adaptively changed depending on the surface orientation. In order to avoid an exhaustive
search for the surface orientation, we introduce a direct method to compute the surface
orientation from the intensity gradients within the window. The method also copes with
the affine intensity distortion between the corresponding regions. Proceeded by the the-
oretical formulation of the proposed algorithm, experimental results demonstrate that it
effectively increases the accuracy of 3D shape recovery while being applicable to various
images.

2 Background

In area-based stereo matching, there are at least two kinds of approaches to attenuate
the influence caused by the phenomenon that the surface orientations locally deform the
intensity patterns surrounding corresponding points.

One approach is to adaptively change the window size according to the amount of
depth variation within the window. Okutomi[12] proposed the adaptive-window algo-
rithm which selects an appropriate size of window by evaluating the local variation of
both intensity and disparity. The algorithm can also deal with the depth discontinuities.
However, since it requires the initial disparity estimates at numerous pixels within the win-
dow to select a suitable window size, those estimates need to be guessed rather accurately
from the beginning. Unfortunately, the requirement is often too strict and unreasonable in
terms of computational cost.

The other approach, which we also consider in this paper, is to compute the surface
orientation as well as the depth. There have been several studies on computing the surface
orientation from stereo vision. G˚arding[16] used the windowed second moment matrix to
estimate the linear spatial distortion. This technique allows a local estimate of the surface
orientation to be computed directly from the local statistics of the left and right image in-
tensity gradients. Jones and Malik[6] solved the same task by using a set of linear filters.
Robert[10] investigated algorithms for evaluating the surface orientation without recon-
structing an explicit metric representation of the scene. These methods, however, treat the
problem of determining the surface orientation directly from images after establishing the
correspondences and do not deal with the deformation problem of corresponding regions
in the stereo matching. Devernay[7] proposed an enhanced correlation method that allows
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a matching window to locally deform between a stereo image pair. Although this method
shares a similar framework to ours, it represents the image deformation with respect to
the derivatives of disparity, not to the surface orientation. Thereby, it is rather complex to
utilize more than two images for a robust depth recovery because the disparities of differ-
ent image pairs are not identical, nor are the derivatives of the disparities consequently.
Mainome[14] tackled the deformation problem in phase-based stereo, but the scheme still
needs the brute force search over the surface orientation in addition to the depth search.

Also in motion estimation or feature tracking, several researchers addressed the de-
formation problem of the intensity patterns. Rehg[8] used the polynomial deformation
model to track a target object in image sequence. Fuh[3] presented the affine-deformation
model for motion estimation. In these methods, however, apart from the expensive com-
putational cost, it is extremely difficult to estimate the full six affine-deformation param-
eters including the relative camera motion as pointed out in [9, 11]. Several practical
approaches have been therefore proposed. Shi[11] used the affine-deformation model to
monitor the quality of the estimated motion. Bergen[9] utilized the deformation model
to compute the planar surface flow assuming that the relative camera motion is already
known. Manmatha[17] measured similarity transformation, i.e., a scale change and rota-
tion by deforming the filter according to the local image deformation.

While these efforts are toward motion estimation or feature tracking, this paper ad-
dresses the deformation problem in stereo matching. We practically reduce the problem
to that of finding three unknown parameters; one for depth and two for surface orientation.
Directly obtaining the surface orientation from intensity gradients within the window, we
solve for point correspondences taking into account the local surface orientation at a rea-
sonable computational cost. In computing the surface orientation, we employ a more
general model to deal with an affine intensity distortion between corresponding regions
while most of conventional methods are based on the brightness consistency assumption.
Further, since the proposed algorithm represents the local image deformation with respect
to the surface orientation, it is straightforward to utilize multiple images as input and in
fact we use three images to stabilize the depth estimation.

3 Local Image Deformation
As stated above the viewing geometry and the local surface orientations cause defor-
mations of intensity patterns surrounding corresponding points. Strictly speaking, these
deformations are represented by homography[10, 15]. However, since a depth variation
within a window is generally small, they can be approximated by 2�2 affine-deformation
matrices. This linear approximation enables a direct computation of the surface orienta-
tion. In this section, we analyze these deformations.

The stereo geometry is shown in Figure 1. We align the world coordinate with the first
camera. Let� be a 3D plane, andX = (X;Y; Z)> andX +�X = (X + �X;Y +
�Y; Z+�Z)> be 3D points on�. The first camera projects 3D pointsX andX+�X
onto 2D image pointsx = (x; y)> andx + � = (x + �; y + �)> respectively. The
perspective camera model defines these projections as

x =
F

Z

�
X
Y

�
; x+ � =

F

Z +�Z

�
X +�X
Y +�Y

�
; (1)

whereF is a focal length. Analogously, the second camera projectsX andX +�X
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Figure 1: The stereo geometry

onto x0 = (x0; y0)> and x0 + �0 = (x0 + �0; y0 + �0)> respectively. LetM 1 =
(m11;m12;m13)

> andM 2 = (m21;m22;m23)
> be respectively the unit vectors point-

ing along the scan-lines and the columns of the second camera image. The perspective
camera model defines these projections as

x0 =
F

Z 0

�
M>

1 (X � t)

M>

2 (X � t)

�
; x0 + �0 =

F

Z 0 +�Z 0

�
M>

1 (X +�X � t)

M>

2 (X +�X � t)

�
; (2)

wheret = (tx; ty; tz)
> is the translation vector from the world originO to the origin of

the second camera, andZ 0 andZ 0+�Z 0 are respectively the depths ofX andX+�X
viewed from the second camera. Let the equation of the 3D plane� beZ = pX+qY +r.
Since bothX andX +�X exist on�, �Z is given by�Z = p�X + q�Y . From this
relationship and Equation(1) and (2), we derive

�0 = A� = (Ac +Av)�; (3)
whereA = Ac +Av ,

Ac =
Z

Z 0

�
m11 m12

m21 m22

�
; and Av =

Z

Z 0

�
pm13 qm13

pm23 qm23

�
:

Here we have assumed�Z � Z and�Z 0 � Z. Equation(3) represents the deformation
of the corresponding area in the stereo images as shown in Figure 2. In the proposed
algorithm we deform the window using this equation. The matrixAc can be computed
with the pose of the second cameraM = (M>

1 ;M
>

2 )
> and the scale factors = Z=Z 0.

SinceM is already known ands is also derived through the depth search,Ac is straight-
forwardly determined. On the other hand, the matrixAv includes variable parameters de-
pending on the image region, i.e., the local surface orientation(p; q). In order to deform
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Figure 2: Window deformation



360 British Machine Vision Conference

the window using Equation(3), we need to evaluate the surface orientation. Although
Av is conventionally ignored based on the preceding local fronto-parallel assumption,
p = q = 0, the proposed algorithm takes it into account to improve the precision of
matching.

4 Surface Orientation from Intensity Gradients
An exhaustive search for the surface orientation on the top of the depth search would make
the computational cost extremely expensive. In this section, we introduce a direct method
to compute the surface orientation from the local intensity gradients, that is inspired by
the gradient-based optical flow computation[1]. In our method the following equation is
employed[3],

af(x1 + �) + b = g(x2 + �
0); (4)

wheref(x) andg(x) are the image intensities of the image pointx = (x; y)>,x1 andx2
are corresponding points, andx1+� andx2+�

0 are arbitrary corresponding points within
the window centered aroundx1 andx2, respectively, as shown in Figure 2. The parameter
a is a scale factor introduced to account for the differences in image contrast, andb is a
bias term modeling the possible differences in the mean intensity level. The parametersa
andb are variable depending on the image region. Gradient-based approaches to compute
optical flow usually use the brightness constancy assumption, so thata = 1 andb = 0
in Equation(4). Thus, Equation(4) formulates a more general model which deals with the
affine intensity distortion between the corresponding regions. This extension is important
for the stereo matching.

Using Equation(3) and Taylor expansion, the right-hand side of Equation(4) becomes

g = g(x2 +Ac� +Av�) = g(x2 +Ac�) +rg(x2 +Ac�)Av�; (5)

whererg = (gx; gy) is the intensity gradient. Here the higher order terms ofAv� are
ignored. Using this expansion, Equation(4) can be rewritten as

�
�(�)� �(�)� �f(x1 + �) �1

�
� = �g(x2 +Ac�); (6)

where� = (p; q; a; b)> and�(�) = sfm13gx(x2 +Ac�) +m23gy(x2 +Ac�)g. Since
Equation(6) holds for any point within the window, a sufficient number of equations to
estimate the unknown parameters of� are acquired by picking up arbitrary points. Hence,
the surface orientation can be computed using a minimum of two images while the use of
multiple images makes the estimation more robust.

Let the third image beh(x) and the corresponding point bex3. The following equa-
tion is employed,a0f(x1 + �) + b0 = h(x3 + �

00). Analogously, we obtain

�
�

0

(�)� �
0

(�)� �f(x1 + �) �1
�
� = �h(x3 +A

0

c�); (7)

where�=(p; q; a0; b0)> and�0(�)=s0fm0

13hx(x3+A
0

c�) +m0

23hy(x3 +A
0

c�)g
1. Since

at any point� = �i(i = 1; 2; :::; N) within the window satisfies both Equation(6) and
(7), the unknown parameters = (p; q; a; b; a0; b0)> can be estimated. As this method
uses only the intensity gradients within the window, it enables the depth estimation with

1Note that the primes indicate these parameters are for the third imageh(x).
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a locally affine-deformable window depending on the surface orientation at a reasonable
computational cost.

It is also possible to refine the surface orientation estimate with iteration. Let(pk; qk)
be a current estimate of(p; q) during thek-th iteration and (�p;�q) be an incremental
estimate. The preceding window deformation matrices become

Ac = s

�
m11 + pkm13 m12 + qkm13

m21 + pkm23 m22 + qkm23

�
; Av = s

�
�pm13 �qm13

�pm23 �qm23

�
:

Since(�p;�q) can be computed analogously, we can update the surface orientation es-
timate by(pk+1; qk+1) = (pk; qk) + (�p;�q).

5 Stereo Matching Algorithm
In this section, we describe our stereo matching algorithm based on the analysis in the pre-
vious sections. Although it is possible to recover the 3D shape from at least two images,
we utilize three images to reduce the ambiguity of correspondence and to estimate the
surface orientation robustly as described in Section 4. Given three images captured from
different viewpoints, we must solve the viewing geometry at the beginning. For sim-
plification we assume the orthographic camera model. Under orthography the viewing
geometry can be solved using SVD[5] given the correct corner correspondences. Since
some incorrect correspondences may be inevitably involved, we employ a random sam-
pling consensus(RANSAC) technique to remove the mismatches[4].

Our concern now is in stereo matching, namely how to recover the 3D shape using the
geometric constraint. In the following we summarize the stereo matching algorithm with
a locally affine-deformable window.

1. Letx be the image point where we want to compute the depth2. Compute the initial
depth estimateZ0 of x, assuming the 3D surface is locally frontal.

2. Assuming the depth isZ0, compute the surface orientation(p; q) of x.
3. Compute the local affine-deformation matricesA(j)(j = 2; 3) by Equation(3) and

evaluate the consistencyC(Z) of the depthZ. We define the consistencyC(Z)
as the sum of two normalized cross correlation measures taking into account the
window deformations.

4. At each depthZ within the search range(Z0 ��Z < Z < Z0 + �Z), compute
the consistencyC(Z). The depthZ� which gives the maximum value ofC(Z) is
basically regarded as the correct depth ofx.

6 Experiments
We present some experiments in which we have applied our stereo matching algorithm to
real images.

First, we compare the performance of the proposed algorithm with that of the conven-
tional one which assumes the 3D surface to be locally fronto-parallel. For precise evalu-
ation of the measurement error, we use a simple object whose shape is already known as
shown in Figure 3. This is a rubber baseball whose radius R is about 3.5cm. We use a
CCD camera with a 25mm lens whose image resolution is 480�480 pixels. The distance
from the camera to the object is about 50cm.

2Strictly speaking, the “depth” cannot be recovered under orthography. But for convenience we use the term
of “depth” in this paper.
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Figure 4(a) shows the average errors in the recovered depths with various window
sizes by the conventional algorithm and the proposed one (with and without iteration
in computing the surface orientation). The error is normalized by the radius R. With a
3�3 window, the shape estimation is poor because such a small window does not include
sufficient intensity variation to identify the corresponding point. In order to eliminate the
ambiguity of correspondence, it is necessary to use larger windows. With 5�5 or larger
windows, our algorithm always gives better shape estimation than does the conventional
one. Moreover, the estimates with iteration in computing the surface orientation are better
than those without iteration. Figure 4(b) shows the percentage of the reference points
which have gross depth errors. We define the gross depth error as above 20 pixels(about
4mm). The tendency is similar to the case with the average error and it is clear that our
algorithm realizes a smaller number of gross errors. Figure 5 shows the recovered shape
by the proposed algorithm with 11�11 window.

We have also applied the proposed algorithm to various images of, such as human
face and human hand. Figure 6�10 show the input images and the recovered 3D shapes.
The distance from the camera to the object is about 50cm. Figure 8 shows the 3D shapes
of the nose in “Face” obtained by the conventional algorithm and the proposed one.

It is not an easy task to recover these shapes because the input images are only slightly

Figure 3: “Ball” images (480� 480)
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Figure 5: Recovered shape of “Ball” by the proposed algorithm
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textured. Nevertheless, the precise shapes are acquired and these results show that our
algorithm works for a wide variety of images. Figure 8 exemplifies that the proposed
algorithm enables more accurate recovery of the 3D shape than does conventional one.
The proposed algorithm successfully recovers the flat structure of the circle area in Figure
8(a), while the conventional one fails. The parts pointed by the arrows in Figure 8 (b) and
(c) correspond to the circle area in (a).

Figure 6: “Face” images

Figure 7: Recovered shape of “Face”

(a) (b) (c)

Figure 8: (a)Nose area in “Face”. (b) Recovered shape by the conventional algorithm. (c)
Recovered shape by the proposed algorithm
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Figure 9: “Hand1” images (left) and recovered shape (right)

Figure 10: “Hand2” images (left) and recovered shape (right)

The proposed algorithm produces not only the depth but also the surface orientation.
Figure 11(a) shows the generated surface orientations of “Face” by our algorithm whereas
Figure 11(b) shows those by locally fitting a plane on the depth map. The surface orien-
tations derived from the depth map are noisy because of direct influence by the errors
included in the depth estimations. On the other hand, those recovered directly from in-
tensity gradients are more reasonable. The result indicates that the proposed algorithm is

(a) Proposed (b) From depth map

Figure 11: Recovered surface orientations of “Face”
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more appropriate also in terms of recovering the surface orientation.

7 Summary and Conclusions
In this paper we have proposed a new stereo matching algorithm which computes the
depth and surface orientation simultaneously. In our algorithm, the 3D surface is locally
approximated by a plane whose surface orientation is arbitrary while the conventional
ones implicitly assume the 3D surface to be locally fronto-parallel. The proposed algo-
rithm locally deforms a window according to the surface orientation which is directly
recovered from intensity gradients within the window. The experimental results have
demonstrated a clear advantage of our algorithm over conventional ones and it is appli-
cable to a wide variety of images. In future work, we will use hierarchical approaches
to improve the efficiency and to treat the depth discontinuities. We are also planning
to combine the proposed algorithm with the techniques of Structure-From-Motion under
more general projection models[2, 13] in order to alleviate the limitations to the scene and
relative camera motion.
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