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Abstract

This paper reports initial research on supporting Visually Mediated In-
teraction (VMI) by developing person-specific and generic gesture models
for the control of active cameras. We describe a time-delay variant of the
Radial Basis Function (TDRBF) network and evaluate its performance on
recognising simple pointing and waving hand gestures in image sequences.
Experimental results are presented that show that high levels of performance
can be obtained for this type of gesture recognition using these techniques,
both for particular individuals and across a set of individuals. Characteris-
tic visual evidence can be automatically selected and used even to recognise
individuals from their gestures, depending on the task demands.

1 Introduction

In general, robust tracking of non-rigid objects such as human bodies is difficult due to
rapid motion, occlusion and ambiguities in segmentation and model matching. Ongoing
research at the MIT Media Lab has shown progress in the modelling and interpretation of
human body activity [22, 28, 29]. Computationally simple view-based approaches to ac-
tion recognition have also been proposed [4] and similar attempts have been made at Mi-
crosoft Research [26, 6]. However, these systems do not attempt intentional tracking and
modelling to control active cameras for Visually Mediated Interaction (VMI). Previous
work on vision-based camera control has been based on off-line execution of pre-written
scripts of a set of defined camera actions [23]. This system used a fixed wide angle camera
with virtual windows for the control of field-of-view. Here we propose to model and ex-
ploit a set of ‘interaction-relevant’ gestures for reactive on-line visual control. These will
be interpreted as user intentions for live control of an active camera with adaptive view
direction and attentional focus. In particular, pointing (for direction) and waving (for at-
tention) are important for deliberative control and the reactive camera movements could
provide the necessary visual context for applications such as group video-conferencing as
well as automated studio direction.

There is growing interest in recognising human gestures from real-time video as a
nonverbal modality for human-computer interaction. The main approaches involve com-
puting low-level features from motion to form temporal trajectories that can be tracked
by Hidden Markov Models or Dynamic Time Warping. However, here we explore the
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potential of using simple image-based differences from video sequences in conjunction
with a powerful connectionist learning paradigm to account for variability in the appear-
ance of a set of predefined gestures. The adaptive learning component is based on RBF
networks, which have been identified as valuable models by a wide range of researchers
[19, 1, 3]. Their main advantages are computational simplicity and robust generalisation
supported by a well-developed mathematical theory. Here studies using video sequences
for recognition of pointing and waving gestures involve time-delay RBFs [14] to provide
fast training and on-line performance for the interactive responses required by applica-
tions with active camera control.

The main purpose of this paper is to present experimental results that show that high
levels of performance for this type of gesture recognition can be obtained using these
techniques both for particular individuals and across a set of individuals. Characteristic
visual evidence can be automatically selected and used even to recognise individuals from
their gestures, depending on the task demands.

2 The Time-Delay RBF Model

Dynamic neural networks can be constructed by adding recurrent connections to stan-
dard multi-layer perceptrons which then form a contextual memory for prediction over
time [15, 7, 21]. These partially recurrent neural networks can be trained using back-
propagation but there may be problems with stability and very long training sequences
when using dynamic representations. Instead, we use a simple Time-Delay mechanism
in conjunction with an RBF network, which we term a TDRBF network, to allow fast,
robust solutions to difficult real-life problems. The Time-Delay Neural Network (TDNN)
model (for an introduction, see Hertz et al. [9]), incorporates the concept of time-delays
in order to process temporal context, and has been successfully applied to speech and
handwriting recognition tasks [27]. Its structured design allows it to specialise on spatio-
temporal tasks, but, as in weight-sharing network, the reduction of trainable parameters
can increase generalisation [16].

The RBF network is a two-layer, hybrid learning network [19, 20], which combines
a supervised layer from the hidden to the output units with an unsupervised layer from
the input to the hidden units. The network model is characterised by individual radial
Gaussian functions for each hidden unit, which simulate the effect of overlapping and
locally tuned receptive fields. A Time-Delay version of this [2] can be created by com-
bining data from a fixed time ‘window’ into a single vector as input. Berthold, however
took a constructive approach for the RBF training stage, combining the idea of a sliding
input window from the standard TDNN network with a training procedure for adding and
adjusting RBF units when required. We have used a simpler technique, successful in pre-
vious work with RBF networks [12], which uses an RBF unit for each training example,
and a simple pseudo-inverse process to calculate weights.

3 Method

Simple experiments have previously been made with the TDRBF network to learn certain
simple behaviours based graxis head rotation [14], distinguishing between left-to-right
and right-to-left movements and static head pose. The network was shown to maintain a
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| Gesture] Body Movement | Behaviour |
pntrl point right hand to left pointing left
pntrr point right hand to right pointing right
wavea | wave right hand above hegd urgent wave
waveb | wave right hand below heafd non-urgent wave

Table 1: Definitions for the four gestures used.

high level of performance even on test data containing individuals not seen during train-
ing. However, such tasks are simplified by their constant motion, so that arbitrary short
segments (2/3 frames) of the whole sequence could be used to identify the overall direc-
tion of head turning. In this paper, we are addressing more complex gestures: pointing
and waving with a hand. Due to the complex motion involved here, characteristic parts of
the complete action will need to be contained in the time window presented to the network
in order that it can be recognised.

3.1 The Gesture Database

Within the context of a video-conferencing active camera control scenario, we are con-
centrating on two specific behaviours which could be used to move the camera or adapt
its field of view: pointing which is interpreted as a request to pass camera attention, and
is implemented by zooming out and panning in the pointing directionyavihg which

is interpreted as a request for camera attention, and implemented by panning towards the
waver and zooming in. We have two types of each behaviour, giving four gestures in all,
shown in Table 1.

We have collected four examples of each gesture from three people, 48 sequences in
all, so far. Each sequence contains 59:3288 8-bit monochrome images (having been
collected at 12 frames/sec for roughly 5 seconds), for a total of 2832 images. These image
sequences are the result of our collaboration in the ISCANIT project with Shaogang Gong
at Queen Mary and Westfield College, London and Stephen McKenna at the University
of Dundee, who are researching real-time face detection and tracking [17, 18, 25]. The
standard RBF and TD-RBF networks have already been shown to work well with such
image sequences for face recognition tasks [13, 14].

We are specifically interested in the areas of motion within each image, so each frame
is differenced with the previous one: any pixel in the current frame within 5 grey-levels
of the corresponding pixel from the previous frame is discarded (set to zero), see Fig. 1.
A count of the number of pixels retained in each frame after this process can be used to
segment the gesture in time, using a simple threshold to signal the first and last frame with
significant numbers of changing pixels, see Fig. 2. Frames before and after this threshold
are discarded to align the start point of the gesture. The sequences are then padded at
the end with nil values to the length of the longest gesture found, to give an equal length
for all sequences in the testset. An integration layer on the TDRBF network can be used
to combine results from successive time windows, which will give smooth gradations
between serial actions. Here we know each sequence contains only one action, and so can
rely on our temporal segmentation to give the single best frame position for classification.
A sparse arrangement of Gabor filters is used to preprocess the differenced images [11]:
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Train/Test Initial % Discarded| % Correct
Sequenceg % Correct After Discard
4/12 92 51 100
8/8 100 16 100

Table 2: Average results for person-specific TDRBF networks: trained and tested with
gesture sequences from a single person.

data is sampled at four non-overlapping scales and three orientations with sine and cosine
components for a total of 510 coefficients per frame.

4 Results

Tables 2-5 summarise the results obtained. For all the experiments, the database was split
into two separate parts, one for training and the other for testing. The ‘Train/Test’ column
shows the actual number of sequences in each part for the experiment. ‘% Correct’ shows
the raw generalisation rate for the TDRBF network. This value can be adapted via a ‘low-
confidence’ measure which has previously been shown to be a powerful method for im-
proving generalisation [13] through the removal of ambiguous results. The ‘% Discarded’
column indicates how many classifications were discarded in this way, and ‘% Correct Af-
ter Discard’ shows the final generalisation rate using only the resulting high-confidence
output.

4.1 Person-specific Gesture Modelling

We first looked at creating person-specific networks, trained and tested using data from
one individual. For this, we used the 16 sequences of each person separately in turn. Here
we are looking to distinguish the four gestures, so there are four classes to be learnt.

Table 2 lists the results for two training configurations, averaged over the three sets of
data. These show that the task could be learnt extremely well even with only one training
example of each gesture (the 4/12 test), but that providing two examples (the 8/8 test) can
reduce the number of low-confidence discards, indicating a more effective separation of
the gesture classes within the network.

4.2 Group-based Gesture Modelling

We now combine the data from the three people in the database, using all 48 sequences,
looking at generalisation in the TDRBF network within a group seen during both training
and testing. Again we are looking to distinguish the four gestures, so there are four classes
to be learnt. In general, the results in Table 3 are slightly better than before: the final result
is still 200%, but at lower levels of low-confidence discard, especially where two training
examples of each gesture are given (the 24/24 test).

To cope with different speeds of movement, we looked at adapting the training data
to explicitly demonstrate the classes at different speeds through simple time-warping.
This was applied to our training sequences by cutting out or repeating frames in the time
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Figure 1: Example of differencing two consecutive frames (a) and (b), result in (c), from
a ‘point with the right hand to the rightpftrr) gesture.
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Figure 2: Two example 5-second image sequences (after differencing each frame with
the previous one) of the ‘point with the right hand to the righthifr) gesture, from

two different people, demonstrating the type of variability present in a single action: (a)
subjectjonh, starting frame was automatically determined as frame 4, ending frame 32
(b) subjectstep starting frame 18, ending frame 57.
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Window Train/Test Initial % Discarded| % Correct
Sequences % Correct After Discard
Fixed 12/36 97 39 100
24/24 96 4 100
Warped ¢10%) 36/36 97 19 100
72/24 96 4 100

Table 3: Results for non-person-specific TDRBF networks: trained and tested with ges-
ture sequences from three people. Fixed window used the training sequences at their
original length, the warped window used three versions (shorter, normal, longer) of the
training sequences.

Train/Test Initial % Discarded| % Correct

Sequenceg % Correct After Discard
4/32 69 75 100
8/32 75 53 100

Table 4: Results for generic TDRBF networks: trained with gesture sequences from one
person, and tested on the other two.

window to shorten or lengthen the training sequences. Using one shorter and one longer
version of each sequence meant that there were three times more training examples than
for the previous experiment (with fixed time windows). The results for this are also shown

in Table 3. Interestingly, varying the length By 0% did not increase generalisation rates
(perhaps because there was very little improvement that could be made), though it did
make a useful reduction in the proportion of output that needed to be discarded through
low confidence. However, it should be noted that such global methods are limited in their
application, as they can only address overall gesture tempo, not within-gesture speed
changes.

4.3 Generic Gesture Modelling

Having tested the TDRBF network with single and multiple-person data, we also wanted
to see how it would generalise with gestures from people it had not seen during training:
could gesture be effectively characterised in the absence of identity-specific information?
There are still four classes to be learnt, but the network sees examples from one person
during training, and the other two during testing.

It can be seen in Table 4, which follows the pattern of the previous tests by using one
(4/32) and two (8/32) training examples of each gesture, that the TDRBF network was
able to learn the classification task from one person and effectively generalise to data from
other people. Such an ability is potentially much more useful than generalisation within
specific people or known groups, because the network, once trained, can be applied to
much more general data.
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Train/Test Initial % Discarded| % Correct

Sequenceg % Correct After Discard
12/36 78 50 94
24/24 96 17 95

Table 5: Results for identity/gesture TDRBF networks: trained and tested with gesture
sequences of all three people, looking both for identity and gesture.

4.4 Combined Gesture and Identity Modelling

Our final test was to see if the individual, as well as the gesture, could be identified. The
three identities and four gestures mean that there are now 12 classes to be learnt. Table 5
gives the results for these tests. When compared to the group-based results in Table 3, it
can be seen that overall generalisation is lower, although a significant proportion of the
test data is still correctly classified. This indicates that non-facial cues, such as posture and
gait, could be used in this form as additional evidence for face recognition applications.

4.5 Discussion

Although Berthold [2] used the integration layer to cope with shifts in time, the scale
of events was not discussed. In particular, here we have to cope with different speeds
of movement and pauses within the overall gesture, as well as the starting frame of the
gesture being variable. Such speed variation can be handled by a recurrent network, or via
training data which explicitly demonstrated the classes at different speeds (time-warping).

To simplify the results here, an integration layer was not used during the testing stage.
The ‘pixels-changed’ threshold, looking at overall movement within the frame, was ef-
fective within this database in identifying start and end points of gestures, but would not
be robust in more general situations, especially if the scene contained more than one per-
son. We anticipate that adding an integration layer would improve results, because the
extra variation in starting point for the test sequences (through their iterative application
on successive frames) would give extra contextual information for identification.

5 Observations

Several points can be seen from the results:

e Simple preprocessing techniques such as frame differencing and thresholding can
be effective in extracting useful motion information and segmenting gestures in
time.

e Several types of TDRBF network can be trained to distinguish gestures over specific
time windows:

— Person-specific gesture models: trained and tested on one person

— Group-based gesture models: trained and tested within a known group of in-
dividuals
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— Generic gesture models: trained on one person, tested on other people

e The TDRBF network is shown to be able to distinguish between arbitrary gestures,
with a high level of performance, even without the benefit of an integration layer.
The thresholding in time of the gestures allowed a single time window to be applied
to the network, rather than several consecutive positions.

e Some characteristics of an individual's expression of gestures may be sufficiently
distinctive to identify that person.

6 Conclusion

In summary, the time-delay RBF networks showed themselves to perform well in our
gesture recognition task, creating both person-specific and generic gesture models. This
is a promising result for the RBF techniques considering the high degree of potential
variability, present even in our highly constrained database, arising out of the different
interpretation of our predefined gestures by each individual.

In our new project, we aim to develop and evaluate real-time user behaviour models
based on temporal prediction of continuous pose and gesture change [8, 24]. The user
would have minimal awareness of the system which will aim to estimate and predict es-
sential body parameters such as head pose, walking, sitting, standing, talking, pointing
and waving gestures as well as expression. Such a model will be essentially appearance-
based in order to provide real-time behaviour interpretation and prediction. Itis important
to note that we are not attempting to model the full working of the human body. Rather
we will aim to exploit approximate and computationally efficient RBF techniques, which
support partial view-invariance, sufficient to recognise people’s expressions and gestures
in dynamic scenes. Such task-specific representations need to be used to avoid unneces-
sary computational cost in dynamic scene interpretation [5].

Most existing recurrent network models take a long time to train, but simple time-
delay RBF networks provide a fast and effective method of identifying arbitrary be-
haviours [14]. The main problem with this alternative strategy for learning behavioural
models is that it is difficult to classify the same behaviour evolving at different speeds
using a single time-window. Solutions to this problem require either a) subdividing the
behaviours into fast and slower versions and/or b) merging these in a second stage of
behavioural analysis. This flexibility may turn out to be an advantage in practice as the
intentional force of a fast pointing action (urgent) may be different from a slower action.
We therefore plan to explore the use of full generative RNNs [10] for general behavioural
control that can be learnt incrementally using many examples and time-delay RBFs for
individual intentional control which needs to be learnt rapidly from a few examples.
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