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Abstract

Snakes provide high-level information in the form of continuity con-
straints and minimum energy constraints related to the contour shape and
image features. These image features are usually based on intensity edges.
However, intensity edges may appear in the scene without a material/color
transition to support it. As a consequence, when using intensity edges as
image features, the image segmentation results obtained by snakes may be
negatively affected by the imaging-process (e.g. shadows, shading and high-
lights).

In this paper, we aim at using colorinvariant gradient information to
guide the deformation process to obtain snake boundaries which correspond
to material boundaries in images discounting the disturbing influences of sur-
face orientation, illumination, shadows and highlights.

Experiments conducted on various color images show that the proposed
color invariant snake successfully find material contours discounting other
”accidental” edges types (e.g. shadows, shading and highlight transitions).
Comparison with intensity-based snakes shows that the intensity-based snake
is dramatically outperformed by the presented color invariant snake.

1 Introduction

Active contour models can assist the process of image segmentation by providing high-
level information in the form of continuity constraints and minimum energy constraints
related to the contour shape and image characteristics. The active contour method that has
attracted most attention is known as snake [4], for example. A snake is an energy min-
imizing curve which deforms its shape under the control of internal and external forces.
These forces are specified so that the snake will hopefully achieve a minimal energy state
when it matches the desired boundary to be detected. Snakes are used in many applica-
tions, including shape modeling, interactive image segmentation and motion tracking. In
this paper, we focus on using snakes for interactive image segmentation.

In general, snakes use image features which are based on intensity gradient infor-
mation. However, intensity edges or region outlines may appear in the scene without a
material transition to support it. For example, the intensity of solid objects varies with ob-
ject shape yielding prominent intensity edges when the orientation of the surface changes
abruptly. In addition, the intensity of the illumination may vary spatially over the scene
causing a gradual change in intensity over the object’s surface even though the surface
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is homogeneously painted. Moreover, intensity boundaries can be caused by shadows
and highlights. It is our point of view that image segmentation methods should rely on
the change of material only, discounting the disturbing influences of surface orientation
change, illumination, shadows and highlights.

Because intensity-based edge detectors cannot distinguish between various transition
types, our attention is directed towards the use of color information. The choice of color
features is of great importance for the purpose of proper image segmentation. It induces
the equivalence classes to the actual segmentation algorithm. The choice which color fea-
tures to use depends on the imaging conditions. It is well known that theRGB values
obtained by a color camera will be negatively affected (color values will shift inRGB-
color space) by the image-forming process [2], [3], for example. Therefore, in this paper,
a snake-based image segmentation method is proposed on the basis of physics consider-
ations leading to image features which are robust to the imaging conditions. To this end,
various well-known color features are studied for the dichromatic reflection model. Then,
color features are selected enabling the snake algorithm to converge to object contours
corresponding to material boundaries in images discounting the disturbing influences of
surface orientation, illumination, shadows and highlights. The novelty of this work is not
to propose a new snake model but to use colorinvariant gradient information (in a stan-
dard snake model) instead of using intensity gradient information steering the deformation
process.

To evaluate the performance of the color invariant snake with respect to intensity-
based snakes, experiments have been conducted on color images taken from full-color
objects in real-world scenes where objects are composed of a large variety of materials
including plastic, textile, paper, wood, rubber, painted metal, ceramic and fruit. In addi-
tion, the images show a considerable amount of noise, shadows, shading, inter-reflections
and specularities.

The paper is organized as follows. In Section 2, we review the properties and behavior
of snakes. In Section 3, we propose robust color invariant gradients on which the color
snake is based. Finally, experiments are conducted on various color images.

2 Active Contour Methods: Snakes

An active contour is a deformable (continuous) curve

v(t) = [x(t); y(t)]; t 2 [0; 1] (1)

that moves through the spatial domain of an imageI to minimize an energy functional
E. The energyE associated with the curve is a weighted sum of internal and external
energies

E = �Eint + �Eext (2)

The advantages of active contour methods can be summed as follows: (1) it is tolerant
to noise (due to the integration of the energy values over the entire contour), (2) it enables
inclusion of a priori knowledge (therefore it is tolerant to ambiguities in images such
as gaps), (3) it provides an intuitive interaction mechanism, and (4) it is well suited for
motion tracking. In order to illustrate the basic principles, which are the same for most
snake methods, we will briefly discuss them.
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The internal energy of a snake measures the desired properties of a contour’s shape.
In order to obtain smooth and physically feasible results, an elasticity and smoothness
constraint are used in the energy functional. The smoothness constraint is, in general,
based on the curvature of the active contour, which may be computed analytically from
the properties of the contour. Then the internal energy is defined as follows:

Eint = (

I
t

(jv(t)0jj2 + jjv(t)00jj2dt)(
I
t

jjv(t)0jjdt) (3)

wherev(t)0 andv(t)00 denote the first and second derivative of the curve with respect to
t, and are measures for respectively the elasticity and smoothness. Measures independent
of the spatial scale are obtained by multiplying the shape measure with the length of the
contour.

The external energy is derived from the image in such a way that the snake is attracted
to certain image features. Definitions of external energy are, amongst others, based on the
image intensity,I(x; y), or on the intensity of Gaussian smoothed images,(G�(x; y) �
I(x; y)). However, in most snake-type techniques the intensity gradient is considered as
the primary image feature, leading to the following external term:

Eext =

I
t

�jjrI(x; y)jjdt (4)

where the gradient imagejjrI(x; y)jj is usually derived from the intensity image through
Gaussian smoothed derivatives.

The use of the gradient image only, however, neglects information that is available
from the 2D gradient field, namely the vector direction. This problem is solved by Wor-
ring et al. [8]. They use the product of the normal to the active contour and the gradient
vector of the object in order to distinguish between the object of interest and neighboring
objects.

An other problem when using intensity gradient information is that intensity edges
may appear in the scene without a material/color transition to support it. As a conse-
quence, when using intensity edges as image features, the image segmentation results
obtained by snakes may be negatively affected by the imaging-process (e.g. shadows,
shading and highlights). Whereas in the traditional active contour methods the image in-
tensity discontinuities are used to guide the deformation process, we focus on using color
invariant information instead.

3 Color Invariant Snakes

Let the color gradient be denoted byrC, then the color-based external energy is as fol-
lows:

Eext =

I
t

�jjrC(x; y)jjdt (5)

Our aim is to analyze and evaluate different color models to produce robust color gra-
dientsrC discounting shadows, shading and highlights. To this end, in Section 3.1,
we briefly discus various standard color models. In section 3.2, the dichromatic reflec-
tion model is presented. In Section 3.2.1 and 3.2.2, we discuss the theory that we have
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recently proposed on color invariant models, see [1] for example. Finally, various alter-
natives forrC are given in Section 3.3.

3.1 Color Models

In this paper, we concentrate on the following standard, color features derived fromRGB:
intensityI(R;G;B) = R+B+G, normalized colorsr(R;G;B) = R

R+G+B ; g(R;G;B) =

G
R+G+B ; b(R;G;B) = B

R+G+B , and hueH(R;G;B) = arctan
� p

3(G�B)
(R�G)+(R�B)

�
.

3.2 The Reflection Model

Consider an image of an infinitesimal surface patch. Using the red, green and blue sensors
with spectral sensitivities given byfR(�), fG(�) andfB(�) respectively, to obtain an
image of the surface patch illuminated by a SPD of the incident light denoted bye(�), the
measured sensor values will be given by Shafer [5]:

C = mb(~n;~s)

Z
�

fC(�)e(�)cb(�)d� +ms(~n;~s; ~v)

Z
�

fC(�)e(�)cs(�)d� (6)

for C = fR;G;Bg giving theCth sensor response. Further,cb(�) and cs(�) are the
albedo and Fresnel reflectance respectively.� denotes the wavelength,~n is the surface
patch normal,~s is the direction of the illumination source, and~v is the direction of the
viewer. Geometric termsmb andms denote the geometric dependencies on the body and
surface reflection respectively.

Considering dichromatic reflectance and white illumination, thene(�) = e andcs(�) =
cs. The measured sensor values are then:

Cw = emb(~n;~s)kC + ems(~n;~s; ~v)cs

Z
�

fC(�)d� (7)

for Cw 2 fRw; Gw; Bwg giving the red, green and blue sensor response under the
assumption of a white light source.kC =

R
�
fC(�)cb(�)d� is a compact formulation

depending on the sensors and the surface albedo.
If the integrated white condition holds (i.e. for equi-energy white light the areas under

the three curves are equal):
Z
�

fR(�)d� =

Z
�

fG(�)d� =

Z
�

fB(�)d� = f (8)

we have:

Cw = emb(~n;~s)kC + ems(~n;~s; ~v)csf (9)

3.2.1 Photometric invariant color features for matte, dull surfaces

Consider the body reflection term of eq. ( 9):

Cb = emb(~n;~s)kC (10)
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for Cb 2 fRb; Gb; Bbg giving the red, green and blue sensor response of a matte, dull
surface patch under the assumption of a white light source.

According to the body reflection term, the color depends only onkC (i.e. sensors and
surface albedo) and the brightness on factoremb(~n;~s). As a consequence, a uniformly
painted surface (i.e. with fixedkC) may give rise to a broad variance ofRGB values
due to the varying circumstances induced by the image-forming process such as a change
in object orientation, illumination intensity and position. The same argument holds for
intensityI .

In contrast, normalized colorrgb is insensitive to surface orientation, illumination
direction and intensity as can be seen from:

r(Rb; Gb; Bb) =
emb(~n;~s)kR

emb(~n;~s)(kR + kG + kB)
=

kR

kR + kG + kB
(11)

only dependent on the sensors and the surface albedo. Equal arguments hold forg andb.
Similarly, hueH is an invariant for matte, dull surfaces:

H(Rb;Gb; Bb) = arctan
� p

3emb(~n;~s)(kG � kB)

emb(~n;~s)((kR � kG) + (kR � kB))

�
= arctan

� p
3(kG � kB)

(kR � kG) + (kR � kB)

�
(12)

In practice, the assumption of objects composed of matte, dull surfaces is not always
realistic. To that end, the effect of surface reflection (highlights) is discussed in the fol-
lowing section.

3.2.2 Photometric invariant color features for both matte and shiny surfaces

Consider the surface reflection term of eq. ( 9):

Cs = ems(~n;~s; ~v)f (13)

for Cs 2 fRs; Gs; Bsg giving the red, green and blue sensor response for a highlighted
surface patch with white illumination.

Note that under the given conditions, the color of highlights is not related to the color
of the surface on which they appear, but only on the color of the light source. Thus for
the white light source, the surface reflection color cluster is on the diagonal grey axis of
the basicRGB-color space corresponding to intensityI .

For a given point on a shiny surface, the contribution of the body reflection component
Cb and surface reflection componentCs are added togetherCw = Cs + Cb. Hence, the
observed colors of the surface must be inside the triangular color cluster in theRGB-
space formed by the two reflection components.

BecauseH is a function of the angle between the main diagonal and the color point
in RGB-sensor space, all possible colors of the same (shiny) surface region (i.e. with
fixed albedo) have to be of the same hue as follows from substituting eq. ( 9) in the hue
equation:

H(Rw; Gw; Gw) = arctan
� p

3(Gw �Bw)

(Rw �Gw) + (Rw �Bw)

�
=

arctan

� p
3emb(~n;~s)(kG � kB)

emb(~n;~s)((kR � kG) + (kR � kB))

�
= arctan

� p
3(kG � kB)

(kR � kG) + (kR � kB)

�
(14)
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factoring out dependencies on illuminatione, object geometrymb(~n;~s), viewpointms(~n;~s; ~v),
and specular reflection coefficientcs and hence only dependent on the sensors and the
surface albedo. Note thatRw = emb(~n;~s)kR + ems(~n;~s; ~v)csf , Gw = emb(~n;~s)kG +
ems(~n;~s; ~v)csf , andBw = emb(~n;~s)kB + ems(~n;~s; ~v)csf .

Obviously other color features depend on the contribution of the surface reflection
component and hence are sensitive to highlights.

3.3 Color Invariant Gradients

In the previous section, the effect of varying imaging circumstances have been studied
for dichromatic reflectance under white illumination differentiated for intensityI , RGB,
normalized colorrgb, and hueH . According to eq. 5, we need to define the color
gradientrC(x; y) differentiated for the various color models.

3.3.1 Gradients in multi-valued images

In contrast to gradient methods which combine individual components of a multi-valued
image in an ad hoc manner without any theoretical basis (e.g. taking the sum or RMS
of the component gradient magnitudes as the magnitude of the resultant gradient), we
follow the principled way to compute gradients in vector images as described by Silvano
di Zenzo [6] and further used in [7], which is summarized as follows.

Let �(x1; x2) : <2 ! <m be am-band image with components�i(x1; x2) : <2 !
< for i = 1; 2; :::;m. For color images we havem = 3. Hence, at a given image location
the image value is a vector in<m. The difference at two nearby pointsP = (x01; x

0
2)

andQ = (x11; x
1
2) is given by4� = �(P ) � �(Q). Considering an infinitesmall

displacement, the difference becomes the differentiald� =
P2

i=1
@�
@xi

dxi and its squared
norm is given by:

d�
2
=

2X
i=1

2X
k=1

@�

@xi

@�

@xk
dxidxk =

2X
i=1

2X
k=1

gikdxidxk =

�
dx1
dx2

�T �
g11 g12
g21 g22

��
dx1
dx2

�

(15)
wheregik := @�

@xi
� @�
@xk

and the extrema of the quadratic form are obtained in the direction
of the eigenvectors of the matrix[gik] and the values at these locations correspond with
the eigenvalues given by:

�� =
g11 + g22 �

p
(g11 � g22)2 + 4g212
2

(16)

with corresponding eigenvectors given by(cos ��; sin ��), where�+ = 1
2 arctan

2g12
g11�g22

and�� = �+ + �
2 . Hence, the direction of the minimal and maximal changes at a given

image location is expressed by the eigenvectors�� and�+ respectively, and the corre-
sponding magnitude is given by the eigenvalues�� and�+ respectively. Note that��
may be different than zero and that the strength of an multi-valued edge should be ex-
pressed by how�+ compares to��, for example by subtraction�+ � �� as proposed by
[7], which will be used to define gradients in multi-valued colorinvariant images in the
next section.
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3.3.2 Gradients in multi-valued color invariant images

In this section, we propose color invariant gradients based on the multi-band approach as
described in the previous section.

The color gradient forRGB is as follows:

rCRGB =
q
�RGB+ � �RGB� (17)

for

�� =
gRGB11 + gRGB22 �

p
(gRGB11 � gRGB22 )2 + 4(gRGB12 )2

2
(18)

wheregRGB11 = j@R
@x
j2 + j@G

@x
j2 + j@B

@x
j2, gRGB22 = j@R

@y
j2 + j@G

@y
j2 + j@B

@y
j2, gRGB12 =

@R
@x

@R
@y

+ @G
@x

@G
@y

+ @B
@x

@B
@y

.
Similarly, we propose that the color invariant gradient for matte objects is given by:

rCrgb =
q
�
rgb
+ � �

rgb
� (19)

for

�� =
g
rgb
11 + g

rgb
22 �

q
(grgb11 � g

rgb
22 )2 + 4(grgb12 )2

2
(20)

wheregrgb11 = j @r
@x
j2 + j @g

@x
j2 + j @b

@x
j2, grgb22 = j @r

@y
j2 + j @g

@y
j2 + j @b

@y
j2, grgb12 = @r

@x
@r
@y

+
@g
@x

@g
@y

+ @b
@x

@b
@y

.
Unlike the other color models, hueH is defined on a ring ranging[0; 2�) instead of

a linearinterval. As a consequence, a low hue value (near 0) and a high hue value (near
2�) are positioned nearby on the ring. To cope with the wrap-around nature of hue, we
define the difference between two hue valuesh1 andh2 as follows:

d(h1; h2) =
p

(cosh1 � cosh2)2 + (sinh1 � sinh2)2 (21)

yielding a differenced(h1; h2) 2 [0; 2] betweenh1 andh2.
Then the color invariant gradient for matte and shiny objects is given by:

rCH = rH (22)

where standard edge detection is performed on theH by Canny’s edge detection algorithm
based on the the difference measure given by eq. ( 21).

Note thatH varies with a change in material only,rgb with a change in material
and highlights, andRGB vary with a change in material, highlights and geometry of an
object. Based on these observation, we may conclude thatrCRGB measures the presence
of (1) shadow or geometry edges, (2) highlight edges, (3) material edges. Further,rCH
measures the presence of (2) highlight edges, (3) material edges. AndrCH measures the
presence of only (3) material edges.

To evaluate the performance of the color snake differentiated for the various color
gradient fields, the methods are compared, in the next section, on color images taken
from full-color objects in real-world scenes.
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4 Experiments

The objects considered during the experiments were recorded in 3RGB-colors with the
aid of the SONY XC-003P CCD color camera (3 chips) and the Matrox Magic Color
frame grabber. The digitization was done in 8 bits per color. Two light sources of average
day-light color were used to illuminate the objects in the scene. The size of the images are
128x128. In the experiments, the same weights have been used for the shape and image
feature constraints.

Figure 1:From top left to right bottom a. Color image with ground-truth denoted by
the white contour. b. The initial contour as specified by the user (the white contour). c.
Snake segmentation result based on intensity gradient fieldrI . d. Snake segmentation
result based onRGB gradient fieldrCRGB . d. Snake segmentation result based on
rgb gradient fieldrCrgb. f. Snake segmentation result based onH gradient field
rCH .

Figure 1.a shows the image of a matte cube against a homogeneous background.
The ground-truth (the true boundary) is given by the white contour. The image is clearly
contaminated by shadows, shading and minor highlights. Note that the cube is painted
homogeneously. Further, in Figure 1.b, the initial contour is shown as specified by the
user (the white contour). As one can see, the snake segmentation results based on intensity
I gradient denoted byrI and theRGB color gradient denoted byrCRGB are negatively
affected by shadows and shading due to the varying shape of the object. In fact, for these
gradient fields is not clear to which boundaries the snake contour should be pulled to.
As a consequence, the final contour is biased and poorly defined. In contrast, the final
contours obtained by the snake method based onrCrgb andrCH gradient information,
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are nicely pulled towards the true boundary and hence correspond neatly with the material
transition.

Figure 2:From top left to right bottom a. Color image with ground-truth denoted by
the white contour. b. The initial contour as specified by the user (the white contour). c.
Snake segmentation result based on intensity gradient fieldrI . d. Snake segmentation
result based onRGB gradient fieldrCRGB . e. Snake segmentation result based on
rgb gradient fieldrCrgb. f. Snake segmentation result based onH gradient field
rCH .

Figure 2 shows an image of a red highlighted ball and a matte cube. Further, in
Figure 3, an image is shown containing two specular plastic donuts on top of each other.
Again the images are affected by shadows, shading, highlights and inter-reflections. Inter-
reflections occur when an object receives the reflected light from other objects. Note
that each individual object is painted homogeneously with a distinct color. The snake
segmentation results based on intensityI and colorRGB gradient are poorly defined due
to the disturbing influences of the imaging conditions (mostly due to the shadows around
the objects). The final contours obtained by the snake method based onrCrgb andrCH
gradient information, are nicely pulled towards the true edge and hence correspond again
nicely to the material transition. Note that in Figure 3.f the initial contour has been partly
converged to the wrong boundary. This an inherent problem of snakes in general where
initial contour must, in general, be close to the true boundary or else it will likely converge
to the wrong boundary. For color snakes, this can be solved by taking the color at both
sides of a hue transition into account.
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Figure 3:From top left to right bottom a. Color image and ground-truth given by the
white contour. b. The initial contour as specified by the user (the white contour). c.
Snake segmentation result based on intensity gradient fieldrI . d. Snake segmentation
result based onRGB gradient fieldrCRGB . e. Snake segmentation result based on
rgb gradient fieldrCrgb. f. Snake segmentation result based onH gradient field
rCH .

5 Conclusion

In this paper, we have proposed the use of colorinvariant gradient information to guide
the deformation process to obtain snake boundaries which correspond to material bound-
aries in images discounting the disturbing influences of surface orientation, illumination,
shadows and highlights.

Experimental results show that the proposed color invariant snake successfully find
material contours discounting other ”accidental” edges types (e.g. shadows and highlight
transitions). Comparison with intensity-based snakes shows that the intensity-based snake
is dramatically outperformed by the presented color invariant snake.

No constraints have been imposed on the images and the camera imaging process
other than that images should be taken from colored objects illuminated by average day-
light color. It is our point of view that these conditions are acceptable for a large variety
of applications.
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