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Abstract

We introduce an object recognition system in which objects are represented
as a sparse and spatially organized set of local (bent) line segments. The
line segments correspond to binarized Gabor wavelets or banana wavelets,
which are bent and stretched Gabor wavelets. These features can be met-
rically organized, the metric enables an efficient learning of object repre-
sentations. Learning can be performed autonomously by utilizing motor—
controlled feedback. The learned representation are used for fast and efficient
localization and discrimination of objects in complex scenes.

1 Introduction

In this paper we describe a novel object recognition system called ORAS SYhje¢t
Recognition withAutonomously learned arf8parseSYmbolic representations based on
LocalLine detectors). In ORASSYLL representations of object classes can be learned
autonomously. The learned representations are used for a fast and efficient location and
identification of objects in complicated scenes.

Learning is inherently faced with the bias/variance dilemma [3]: If the starting con-
figuration of the system is very general it will have to pay for this advantage by having
many internal degrees of freedom resulting in bad generalization abilities —the “vari-
ance” problem. On the other hand, if the initial system has few degrees of freedom it may
be able to learn efficiently, but there is great danger that the structural domain spanned
by those degrees of freedom does not cover the given domain of application —the “bias”
problem. We show here that appropriately structagdiori knowledge can help to cope
with the bias—variance dilemma. Formulating a numberpfiori principles to reduce the
dimension of the search space and to guide learning we handle the variance—problem. We
expect to avoid the bias—problem because of the general applicability of those principles.
Important constraints are:

PF1 Significant features of a local area of the two—dimensional projection of the visual
world are localized (bent) lines.
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a) b) C)

Figure 1: Path correspondingto a banana wavelet. a: Arbitrary wavelet. b: Corresponding
path. c: Visualization of a representation of an object class. Gabor or Banana wavelets
with lower frequencies are represented by line segments with larger width.

PF2 Metric organization of the feature space indicating their differences in the properties
orientation, curvature and position.

PF3 Hierarchical processing of features.
PF4 Sparse coding.

Other contraints, discussed in detail in [5], are concerned with the division of the
feature space in independent subspaces (PL1: Independence), its temporal organization
(PL2: Correspondence) and statistical criteria for the evaluation of significant features for
an object class (Invariance Maximization (PE1) and Redundancy Reduction (PE2)).

Our representation of a certain view of an object class comprises only important fea-
tures, learned from different examples (see figure 8c and 2). In section 2 we formalize PF1
by assigning a local line segment to Gabor wavelets or banana wavelets respectively (see
figure 1a,b). In addition to the parameters frequency and orientation banana wavelets pos-
sess the properties curvature and elongation (see figure 3). The space of banana wavelet
reponses is very large. An object can be represented as a configuration of a few of these
features, therefore it can be coded sparsely (PF4). The feature space can be understood
as a metric space (PF2), its metric representing the similarity of features. This metric is
essential for feature extraction and the learning algorithm (section 3). The banana wavelet
responses can be derived from Gabor wavelet responses by hierarchical processing (PF3)
to gain speed and reduce memory requirements. The sparse representation combined with
the hierarchical feature processing allows a fast and effective locating (section 4).

In order to avoid the necessity of manual intervention for the generation of ground
truth we equip the system with a mechanism which can produce controlled training data
by moving an object with a robot arm and following the object by fixating the robot
hand. The robot produces training data on which a certain view of an object is shown
with varying background and illumination but with corresponding landmarks having the
same pixel position in the image (see figure 2). We apply the learning algorithm to this
data to extract an object representation (see figure 2v). Another way to avoid manual
intervention is one—shot learning (see figure 6), which already allows for the extraction of
representations successfully applicable to difficult discrimination tasks.

Recently additionah priori knowledge has been introduced in terms of Gestalt prin-
ciples "collinearity” and "parallelism” [10]. This is motivated by the discovery of sec-
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D) ii) ii) iv) V)
Figure 2:a) The robot arm with the camerh) The “retinal” images produced by follow-
ing the robot arm holding a toy—duck,i—iv) Significant Features per Instance extracted

in an rectangular region (shown in b,@,v) Learned representatiod) Training data and
learned representation for a toy car.

ond order correlations between collinear and parallel line segments in natural images [4].
Supposing that at least some parts of perceptional grouping in biological vision can be
considered as a consequence of preattentive low level mechanisms [12], Gestalt relations
are integrated by establishing "hard-wired” connections among local features.

Our system has certain analogies to the visual system of vertebrates. There is evidence
for curvature sensitive features processed in a hierachical manner [1]; sparse coding has
been discussed as a coding scheme used in the visual system [2]; and metric organization
of features seems to play an important role for information processing in the brain [13].
Instead of detailed modelling of brain areas we aim to apply some basic concepts inspired
by brain research (such as sparse coding, hierarchical processing, metrical organisation of
features, etc.) in our artificial object recognition system. For a more detailed discussion
of the analogies to biology we refer to [7].

2 The Feature Space

The principle PF1 gives us a significant reduction of the search space. Instead of
allowing, e.g., all linear filters as possible features, we restrict ourself to a small subset.
Considering the risk of a wrong feature selection it is necessary to give good reasons for
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Figure 3: Relation between Gabor wavelets and banana wavelets.

B 5 5

Figure 4: The banana wavelet on the left is approximated by the weighted sum of Gabor
wavelets on the right.

our decision. We argue that nearly any 2D-view of an object can be composed of localized
curved lines. Furthermore, the fact that humans can easiliy handle line drawings of objects
strengthens our assumption PF1.

Banana Wavelets: A banana \LvaveIeBb is a complex—valued function, parameterized

by a vectorb of four variablesh = (f, «, ¢, s) expressing the attributes frequengy),(
orientation ), curvature ¢) and size §). It can be understood as a product of a curved
and rotated complex wave functidi’ and a stretched two—dimensional Gaussi#n

bent and rotated accordingfd;:

Bi(a,y) = G"(z,p) - (F(2,y) - e¥) )
with
2

- 2
G(z,y) = exp (—f? (%2 (xcosa+ysina+c(—xsina+ycosa)2) +

0523_2(—33 sin o + y cos a)2))

and
F(z,y) = exp (zf (a:cosa +ysina+c(—zsina +ycosa)2)) .

Our basic feature is the magnitude of the filter response of a banana wavelet extracted
by a convolution with an imade A banana waveleB® causes a strong response at pixel

I The substraction by the DC—paarftz_m in equation (1) insures the independence of the filter response from
the mean grey—value.
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original:

after Gestalt
transformation:

Figure 5: upper row: A line drawing and its Garbor transformation displayed for four
different filter orientations (out of eigth 0..7). Direction 0 is the vertical direction and

4 is the horizontal oneunderneath: The Garbor transformation modified by Gestalt
principles. The gaps in 2a), b) and d) have been bridged and the orientation Selectivity is
improved.

positionZ when the local structure of the image at that pixel position is simila?’;msee
[5, 6]).

The Feature SpaceThe six—dimensional space of vectors: (Z, E) is called thefeature

spacewith & representing the banana wavelt with its center at pixel positiof in an
image. In [5, 6] we define a metrit{,, ¢»). Two coordinateg , & are expected to have

a small distancé when their corresponding kernels are similar, i.e., they represent similar
features (PF2).

Non-linear Gestalt transformation: A non-linear Gestalt transformation (see figure

5) can be performed on a Garbor-transformed image by setting up contextual relations
among features. In case of collinearity and parallebsraigthfilters of equal orientation

and frequency are combined. For each point in the Garbor-transform a confidence value
of collinear and parallel context is computed from responses of surrounding filters within
a well defined area (for details see [10]). An important aspect of ORASSYLL is a criteria
of the presence of a local line segment. By applying the Gestalt principles collinearity
and parallelism we can make usegdbbal relationsfor this criterion. Globalized edge
detection is expected to be more robust with respect to local distortions due to a complex
background or poor conditions of illumination.

Approximation of Banana Wavelets by Gabor Wavelets: To reduce computational
requirements for the extraction of the large feature space we have defined an algorithm to
approximate banana wavelets from Gabor wavelets and banana wavelet responses from
Gabor wavelet responses (see [5, 6]). By this hierarchical processing (PF3) we achieve a
speed up to a factor 5. Figure 4 gives the idea of the approximation algorithm.
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Figure 6: One—shot learning: Row a) and c) show the objects to be learned in front of
homogeneous backgound. Row b) and d) show the extracted representations. For all
objects a rectangular grid was roughly positioned on the object as in the first image a,i).

3 Learning

Extracting Significant Features Per Instance:Our aim is to extract the local structure in

an imagdl in terms of curved lines expressed by banana wavelets. We defigrificant

feature per instancef an object by two qualities. Firstly it has to cause a strong response
(C1), secondly it has to represent a maximum within a local area of the feature §#jce (
Figure 8b,i-iv), 6b,c) and 2c,i—iv) show the significant features per instance for some
objects (each banana wavelet is described by a curve with same orientation, curvature and
size). In terms of analogy to the processing in area V1 in the mammalian visual system
C1 may be interpreted as the response of a certain column which indicates the general
presence of a feature, whereas C2 represents the intercolumnar competition giving a more
specific coding of this feature [11].

One-shot learning:By positioning a rectangular grid on a roughly segmented object (see
figure 6a,i) in front of homogeneous background and extracting significant features per
instance as described above suitable representations of objects can already be extracted.
These representations are successfully applied to difficult discrimination tasks.

Clustering: After extracting the significant features per instance in different pictures we
apply an algorithm to extract invariant local features foclass of objects Here the

task is the selection of theelevant featuregor the object class from the noisy features
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Figure 7: Clustering: a) Distribution of the significant features per instance extracted at
a certain landmark. b) Codebook initialization. ¢) Codebook vectors after learning. d)
Substituting sets of codebook vectors with small distance by their center of gravity. e)
Counting the number of elements within a certain radius. f) Deleting codebook vectors
representing insignificant features.

extracted from our training examples (see figure 8b,i—iv) and 2c,i—iv). We assume the
correspondence problem to be solved, i.e., we assume the position of certain landmarks
of an object to be known on pictures of different examples of these objects. In some of our
simulations we determined corresponding landmarks manually, for the rest we replaced
this manual intervention by motor controlled feedback (see section 5).

In a nutshell the learning algorithm works as follows (illustrated for two dimensions
in figure 7): Fig.7a—c) For each landmark we express the significant features per instance
of all training examples by six dimensional codebook vegtob), representing the pixel
position and the parameter frequency, orientation, curvature and elongation. We optimize
the codebook vectors by the LBG vector quantization algorithm [9]. Fig.7d) Codebook
vectors with small distances are substituted by their center of gravity (PE2: reduction of
redundancy). Fig.7e,f) A significant feature for an object class is defined as a codebook
vector expressing many data points. That means the feature corresponding to the code
book vector or a similar feature (according to our metfi®ften occurs in our training
set, i.e., has high invariance (PE1). We end up with a graph with its nodes labeled with
banana wavelets representing the learned significant features (see figure 8bv, and figure
2dv, ev). The edges of the graph labeled with metric relations of the landmarks.
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Figure 8:a) Pictures for trainingb,i—iv): Significant features per instance describing be-
side relevant information also accidential features such as background, shadow or surface
texturesb,v) The learned Representation.

4 Matching

To use our learned representation for location and classification of objects we define
a similarity function between a graph labeled with the learned banana wavelets and a
certain position in the image. #otal similarity averagedocal similarities The local
similarity expresses the system’s confidence whether a pixel in the image represents a
certain landmark. The graph is adapted in position and scale by optimizing the total
similarity. The graph with the highest similarity determines the size and position of the
objects within the image.

In a nutshell the local similarity is defined as follows (for details see [5]): For each
learned feature and pixel position in the image we simply check whether the correspond-
ing banana response is high or low, i.e., the corresponding feature is present or absent.
Because of the sparseness (PF4) of our representation only a few of these checks have
to be made, therefore the matching is fast. Because we make use only of the important
features, the matching is efficient.

5 Simulations

Learning of Representation: Firstly we apply the learning algorithm to data consisting

of manually provided landmarks. Our training sets consist of a set of approximately 60
examples of an object viewed in a certain pose. As objects we use cans, faces, and hand
postures. Corresponding landmarks are defined manually on the different representatives
of a class of objects (figure 8.

To avoid the manual generation of ground truth we can either apply one—shot learning
(see section 3) or make use of motor controlled feedback: By moving an object with a
robot arm and following the object by keeping fixation relative to the robot hand using
its known 3D position, we produce training data in which a certain view of an object is
shown with varying background and illumination but with corresponding landmarks in
the same pixel position within the image (see fig 2b,d). Then we can apply our learning
algorithm with a rectangular grid roughly positioned on the object (see figure 2b,i). For
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Figure 9: Face finding with learned representations for three scales. The mismatch (right)
is caused by the person’s unusual arm position.

the generation of ground truth for frontal faces we recorded a sequence of pictures in
which a person is sitting fixed on a chair. lllumination and background is changed as for
cans. To extract representations for different scales we apply the learning algorithm to the
very same pictures of the different sequences scaled accordingly (see figure 9).
Matching: For the problem of face finding in complex scenes with large size variation a
significant improvement in terms of performance and speed compared to the older system
[8, 14] could be achieved. Figure 9 shows some examples of matches and mismatches.
The object finding in one picture approximately requires 1.5 seconds on a Sparc Ultra. We
also performed successfully matching with cans, hand postures, and other objects, as well
as various discrimination tasks (most of them described in [5]). A detailed comparison of
ORASSYLL and the object recognition system [8, 14] can be found in [5].

6 Conclusion

We described an object recognition system which is able to learn autonomously efficient
representations of objects. Learning is guided by a carefull selection of powamnfiill
generakh priori constraints. The learned representations have been succesfully applied to
difficult matching tasks.
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