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Abstract

The Concordance-based Medial Axis Transform (CMAT) presented in this
paper is a multiscale medial axis (MMA) algorithm that computes medial
evidence from grey-level boundary measures. It differs from previous
algorithms of this type in considering the symmetry of both boundary position
and strength. The resultant MMA transform is not prone to the generation of
spurious medial responses exhibited by previous algorithms, but accurately
estimates the position of the medial axis across scale. In addition, the medial
axis and object scale are more distinctly identified. Thus CMAT medialness
responses are easier to interpret than responses from previously reported
measures. This is illustrated using a test figure and a radiograph of a hand.

1 Introduction

The medial axis is a structure, first proposed by Blum [1], that captures global shape
properties of an object. It is defined as the locus of centres of the maximal disks that fit
within an object. However, this single scale definition of the medial axis is sensitive to
small variations in the boundary description of an object. To construct a robust medial
axis representation, a hierarchy and thus a series of resolution reduction steps are usually
needed. One approach is to smooth the segmented contours of objects. An alternative
approach is to apply progressively larger blurring filters to images producing a set of
scale-space images. Koenderink [4] argued that this approach captures global
relationships better than contour smoothing. Moreover, this approach does not need a
prior segmentation and avoids discarding important boundary information at an early
stage of processing. Pizer's Multiscale Medial Axis (MMA) [6] is one such method. It
has been successfully used in image registration [3] and object characterisation [7].

The MMA theory recognises that geometric measurements, such as medial axis
computation, should be computed at scales (smoothing levels) proportional to the size of
the object of interest. This allows the interpretation of fine-scale detail to be separated
from the interpretation of larger-scale shape properties. Fritsch [3] convolved different
sizes of LoG kernels with grey-level images to generate a “medialness” image and
defined “medialness” as a measure of the likelihood that a given location is a symmetric
point at that scale. The multiscale medial axis is a ridge in this medialness space. This
definition of the MMA is a further extension to the multi-resolution scheme of Crowley
and Parker [2], in which the DoG kernel is used. They both use an axis-centred operator
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that responds well at a scale and position where the operator optimally engages two
sides of an object. The Hough-like Medial Axis Transform (HMAT) [5] uses a
boundary-centred operator, the first derivative of Gaussian, to measure “boundariness”
in scale-space. These boundariness estimates are used to accumulate medialness
responses at a distance from the boundary that is proportional to scale. As in [3], the
ridge of the medialness response is the multi-scale medial axis. However, the medialness
response obtained using the LoG and HMAT is like a propagation of boundary
description and produces many spurious medialness responses which do not represent
any true medial structure. Although the medialness values at "true" medial points are
usually higher than those at neighbouring positions and scales it can be difficult,
especially in noisy images and images that contain multiple figures, to identify the true
medial response. In the LoG and HMAT, a strong isolated edge will make a strong
contribution to the score in medialness space.

In this paper, we propose a Concordance-based Medial Axis Transform (CMAT),
which considers the confidence of mutual support from multiple boundaries for a
particular medial structure. The CMAT avoids spurious medial responses, provides an
accurate localisation of the medial response and clearly identifies the scale of a
symmetry.

2 Principle of CMAT

Each boundary point makes a vote proportional to its gradient magnitude. These votes
are accumulated in medialness space at a distance from the boundary to provide an
initial estimate of medialness. The accumulated value of the initial medialness estimate
is not less than the value of any single vote. Only in positions where the initial
medialness estimate is greater than the value for a single vote, is there evidence for true
medialness. The confidence, that a boundary point is a part of a symmetric structure, can
be judged from the ratio between the total votes from other boundaries and the initial
medialness estimate at the relevant point in medialness space. The boundariness
contribution to true medialness is proportional to its gradient magnitude as well as its
confidence of symmetry. The medialness is the accumulation of these boundariness
contributions.

3 Computation of CMAT

3.1 Boundariness

The first step is to produce the boundariness scale-space of the irtggesing:
B(x,0)=1(X)*VG(X,0) 1)

where x is the spatial position is the Gaussian convolution kernel, amds the

standard deviation of the convolution kerr&l For each pointx; in boundariness

space its corresponding contribution at positignin medialness space is:
n(XA!G) :”B(XBrO-)” (2)
Positionx, in the medialness space is defined as:
Xa =Xg+IB(Xg,0)/|B(X g o) (3)
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wherer =k (kis a constant of proportionality with a typical value 2) (see Fig. 1).

Boundariness Space

Figure 1: The boundariness contribution of paigis located at poin, in medialness space.

The confidence of mutual support is estimated by examining two elemental regions with\radius
centred atXg andX , . The medialness response at paiig the integration of true contributions
over a circular region with a radius of R .

3.2 Contribution of Boundariness to True Medialness

We define a measure of mutual support for each pwjntin boundariness space, in
terms of the proportion of medialness evidence at positignprovided by other
boundary points as:
medialnessX,) — boundarinesg,j
medialnes$x,)

When several boundary points from a symmetric structure contribute towards
medialness, each contribution will be located at a tightly clustered set of real valued co-
ordinates. The above medialness estimate is obtained by integrating over a small
elemental area. To maintain consistency between the medialness and boundariness
measure, the boundariness estimate is also integrated over an elemental area of the same
size. The confidence of mutual support is defined as:
AM(X,,0) — Ab(X;,0)

AM(X 5, 0)

mutual supportx{ ¥

P(Xg,0) = (4)

where:

Ab(xs,0) = Io; B(Xg+u,0)|du (5)

AM(X,,0) = [, mix,+u,0)d (6)
Here OXAB represents an elemental region circumscribed by a circle centred at position

Xg With a radius A, and OXAA represents a similar region centred »xat. For an
elemental areaAb(xg,o) < Am(x, o). Therefore & p(Xg,0)< 1
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For discrete spatial sampling, boundary points are always located at sampling grids,
but their contributions are not. A square-shaped elemental regionAw.5 pixel is
used. Therefore:

Ab(xg,0) = [B(xg,0) (7)
The boundariness contribution to true medial structure is:
B'(Xg,0) =B(Xg,0)p(Xg,0) (8)
True contribution to medialness at positioR is:
M (x,,0) =B (X;.0)| ©)

3.3 Medialness

The refined medialness at positirnis the integral of the boundariness contribution to
the true medialness structure in the a@&acentred ax is:

M(x,0) = | . (v.0)G —x, ') (10)

Where r'= Ao (4 is a constant of proportionality which controls the sharpness of the
medialness response and has a typical value of 0.5). Here a Gaussian distance weighting
function is used to define the region of integration. The extent of this area is defined by
setting R=3r' because a Gaussian function is close to zero at a distance of more than
three times its standard deviation.

As proved in [8] that, iN boundary point§ ,i=1,... N contribute to a medial point

A, the medialness response at point A is:

Mo () (1o (11)

whereSis the sum of the contributiorts, andc is 1-normalised variability ob, . The

smaller the variability, the more concordance (gregtexists among the contributions
and the greater the medialness is; hence the name: Concordance-based Medial Axis
Transform (CMAT).

4 Performance of CMAT

4.1 Medialness Distribution in Scale Space

The CMAT medialness response, like that of HMAT, is a manifold in scale space. For a
1-D structure, the medialness is maximal at the centre of an object when the scale of the
medialness operator is optimal (proportional to the width of the object). For a 2-D
structure a ridge of medialness is formed along the medial axis positions and at a range
of scales corresponding to local widths. This means that it is possible to localise the
medial axis accurately at optimal scales by using the HMAT and CMAT algorithms. The
LoG operator was criticised by Morse [5] because differences in boundariness strength
can change the location of the medialness maximum.

We apply the LoG, HMAT and CMAT medialness algorithms to the 1-D object
profile, shown in Fig. 2(a), which corresponds to a dark “object” in a lighter
background. The height of the right edge is double that of the left edge. Although the
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Figure 2: A 1-D object profile (a), and its scale-space surface of medialness from the LoG (b),
HMAT (c) and CMAT (d).

15 scale
/ optimal scale

guantitative relation between the heights of these two edges is arbitrary, the notion of
varying boundary response in grey-level images is represented. The spatial position is
normalised by the “width” (half-distance between two edges) of the “object”. For
medialness responses in scale space, the scale is also normalised by the optimal scale so
that the responses of the LoG, HMAT and CMAT algorithms can be compared. Our
computation shows that the optimal scale of the LoG is the “width” of the object, while
that of the HMAT and CMAT is the half-width. Each medialness response is normalised

by its maximum across scale.

Fig. 2(b)-(d) show the two-dimension scale space surfaces for the LoG, HMAT and
CMAT medialness responses to the object in Fig. 2(a). The evolution of the LoG and
HMAT medialness at increasing scale is similar to the summation of two “waves”
“propagating” from the object boundary. The “wave” on one side is sensitive to bright
objects on a darker background, and the other is sensitive to dark objects on a brighter
background. At a small scale, far from the optimal value, the medialness responses of
the LoG and HMAT is strong while the CMAT produces no response. As scale
increases, the inward “wavefronts” of the LoG and HMAT begin to “interfere”, and
produces a response that is not indicative of medialness nor close to the “object” centre.
Only the CMAT produces a true medialness response at the object centre. At optimal
scale, all three algorithms produce their maximal responses at the object centre. When
the scale is larger than the optimal scale, the medialness response of each algorithm
begins to collapse. The medialness scale-spaces of the LoG and HMAT are the mixture
of boundary and medial properties, while that of the CMAT reflects only medial
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Figure 3: The magnitude (a) and position (b) of medialness maxima at each scale for the
LoG, HMAT and CMAT.
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Figure 4: The medialness response of the HMAT (a) and CMAT (b) across scales at three
positions.

properties and therefore provides a clear description of medialness.

Fig. 3(a) shows the maximal responses at each scale for the LoG, HMAT and CMAT
medialness. All three medialness estimators give their maximal responses at the optimal
scale. Therefore we can accurately localise the medial point using any of these
algorithms. The sequence of selectivity to the optimal scale (best first) is: CMAT,
HMAT and LoG; the CMAT has a much better scale selectivity than the HMAT and
LoG because its response at other than the optimal scale is greatly reduced.

Fig. 3(b) shows the position of maximal responses at each scale for the LoG, HMAT
and CMAT medialness estimators. Each trace crosses the object centre at the optimal
scale, and then deviates from the object centre almost linearly with scale. The sequence
of accuracy of each estimator at a range of scales (best first) is : CMAT, LoG and
HMAT. At four times the optimal scale, the localisation bias of the CMAT is 13% that
of the HMAT and 19% that of the LoG. This result also shows that, contrary to Morse’s
conclusion, the HMAT medialness response is more readily moved to one side by
differences in boundary strength than the LoG medialness. Despite their obvious
difference at non-optimal scales, we can observe that each medialness estimator has a
similar localisation bias near the optimal scale.

In order to construct “the optimal scale medialness” for axis extraction, Fritsch
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located all medialness extrema across scale for each spatial position [3]. Fig. 4(a)-(b)
shows the HMAT and CMAT medialness responses across scale for three points along
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Figure 5: A 1-D noisy object profile, and its scale-space surface of medialness from the LoG
(b), HMAT (c) and CMAT (d).

the object. Point A is near a boundary, point C is at the object centre, and B is between
A and C. The response for the LoG is similar to that of the HMAT. For positions away
from the object centre, both the HMAT and CMAT medialness responses collapse and
exhibit medialness extrema at a larger scale than the optimal scale. The scale of
medialness extrema for the CMAT is much closer to the optimal scale than that of the
HMAT ( 24% larger than the optimal scale for the CMAT and 76% for the HMAT at
point A), which shows that the CMAT is a better estimator of the optimal scale at a
position off the object centre. Moreover, the CMAT medialness for the positions off the
object centre collapse much faster than the HMAT medialness estimators, which shows
that the CMAT has a better selectivity to the object centre than the HMAT. For
positions near to the boundary, the HMAT response contains two peaks, while the
CMAT response has only one. The first peak of the HMAT response for point A does
not represent a true medial property and is an artefact. We can also observe that the
CMAT response over scales at the object centre almost coincides the HMAT response.

4.2 Effect of Noise on Medialness

We have tested the LoG, HMAT and CMAT algorithms using a 1-D object under noisy
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Figure 6: The standard deviation of spatial (a) and scale (b) localisation error under increasing
noise levels.

condition to see how noise affects the computation of medialness. Fig. 5(a) shows an
object profile with two boundaries of the same strength, to which Gaussian-distributed
noise has been added. The standard deviation of this noise is 50% of the signal
amplitude.

Fig. 5(b)-(d) shows the 2-D scale space surfaces of the LoG, HMAT and CMAT
medialness responses for the profile in Fig. 5(a). The responses are normalised by the
medialness maximum across scale of this profile but without noise. Each the medialness
response forms a maximum near the object centre and near the optimal scale, for the
primary object. Due to the low level of added noise, medialness response is mainly
altered at small scales. As scale increases, its effect greatly decreases and the object
medial point can be readily extracted from the scale space. The response surface of the
LoG is smoother than those of the HMAT and CMAT, because the LoG uses a double-
sized smoothing operator.

Fig. 6(a) and (b) are the standard deviation of spatial and scale localisation errors of
the LoG, HMAT and CMAT under increasing noise levels. They are computed over
1000 noisy object profiles for each level of noise. The medial point is realised as the
maximal medialness point with a spatial position between [-0.5,0.5] and a scale between
[0.7,1.5]. The results show that the standard deviation of spatial and scale localisation
error of the LoG, HMAT and CMAT all increase linearly with the standard deviation of
noise level. The curves for the CMAT coincides with those for the HMAT, which shows
again that these two algorithms have similar performance near the object centre and the
optimal scale. The HMAT and CMAT have a 27% lower spatial localisation error and a
15% lower scale localisation error than the LoG.

4.3 Application to Grey-level Images

We applied the HMAT and CMAT algorithms to both synthetic and medical images.
Fig. 7(a) is a rectangle with a sawtooth edge, which can be thought of as a primary shape
(rectangle) disturbed by fine detail (the sawteeth). The hierarchy and robustness of
multiscale analysis are demonstrated: the boundariness and the medialness responses
reflect the triangular sawteeth and corner ends at small scales (see Fig. 7(b),(c) and (d)),
the rectangle at medium scales (see Fig. 7(e), (f) and(g)), and the elongated shape at
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Figure 7: A comparison of medialness response for a rectangle with a sawtooth edge at multiple
scales. (a) Original image, (b) boundariness at scale of 2.5 pixels, (c) HMAT medialness at scale
of 2.5 pixels, (d) CMAT medialness at scale of 2.5 pixels, (e) boundariness at scale of 5 pixels,
(f) HMAT medialness at scale of 5 pixels, (g) CMAT medialness at scale of 5 pixels, (h)
boundariness at scale of 10 pixels, (i) HMAT medialness at scale of 10 pixels, and (j) CMAT
medialness at scale of 10 pixels.

large scales (see. Fig. 7(h), (i) and (j)). The representation of larger scale properties is
little affected by fine detail. The brightest regions of the HMAT medialness response in
Fig. 7(c), (f) and (i) correspond to true medial structures whilst the lines framing the
shape are spurious responses. On the other hand, all the true medial structures and only
the true medial structures are clearly visible in the responses of the CMAT algorithm
shown in Fig. 7(d), (g) and (j).

Fig. 8(a) shows an X-ray image of a hand. This image was chosen as an example of a
natural image in which the amplitude and sharpness of the grey-level boundary varies,
where the shapes are relatively complex and multiple “objects” are in close proximity.
As in the synthetic images the CMAT produces a truer representation of medialness
which is not confused by the spurious responses shown in the HMAT results. Both
internal and external symmetries are clearly visible around the fingers for the CMAT
results (see Fig. 8(d)). It can be observed that the fingers are reflected in the medialness
as well as boundariness at small scales (see Fig. 8(b), (c), and (d)), and the wrist is
reflected at larger scales (see Fig. 8(e), (f) and (g)). The CMAT medialness includes all
the true medial structures but gives a clearer description.
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5 Conclusions

We have presented the properties of, CMAT, an algorithm for computing the multiscale

medial response of grey-level images. The result gives a clearer description of

shapesthan previously reported transforms, but maintains localisation accuracy for
medial axes and object scale. The elimination of "spurious" medialness responses
simplifies the interpretation of the medial transform. Besides this, our approach gives a
more selective response to the position and scale of the medial axis. Moreover, the
CMAT has a better estimate of medial axis position at other than the optimal scale, and
a better estimate of object scale at other than the medial position. The effectiveness of
the CMAT is accredited to the use of the concordance measure among boundary
contributions.

(e) (f)
Figure 8: A comparison of medialness response for an X-ray image of a hand. (a) The original
image, (b) the boundariness at scale of 1 pixel, (c) the HMAT medialness at scale of 1 pixel, (d)
the CMAT medialness at scale of 1 pixel, (d) the boundariness at scale of 8 pixels, (e) the HMAT
medialness at scale of 8 pixels, and (g) the CMAT medialness at scale of 8 pixels.
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