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Abstract

Evaluating the performance of optical flow algorithms has been difficult be-
cause of the lack of ground-truth data sets for complex scenes. We describe
a simple modification to a ray tracer that allows us to generate ground-truth
motion fields for scenes of arbitrary complexity. The resulting flow maps are
used to assist in the comparison of eight optical flow algorithms using three
complex, synthetic scenes. Our study found that a modified version of Lucas
and Kanade’s algorithm has superior performance but produces sparse flow
maps. Proesmans et al.’s algorithm performs slightly worse, on average, but
produces a very dense depth map.

1 Introduction

Seventeen years have passed since Horn and Schunck published their influential paper on
the calculation of optical flow [4]. Since then, a substantial amount of research has been
devoted to finding ways to calculate optical flow more efficiently and more accurately.
Optical flow extraction has been proposed as a preprocessing step for many high level
vision algorithms.

Despite the volumes of research on this topic, few attempts have been made to evaluate
the performance of these algorithms on complex image sequences. This is at least partly
due to the difficulties in obtaining ground truth motion fields for complex scenes.

This paper builds on the the research of Barron et al. [1]. They conducted an empirical
analysis of nine optical flow algorithms. The algorithms were tested on five synthetic
image sequences where ground truth motion fields were available and four real image
sequences for which no ground-truth motion field was available. In the four real image
sequences, no objective evaluation of performance was available. Four of the synthetic
sequences were constructed from simple 2D image operations, for example, translating
a simple pattern. In these cases the ground-truth motion field was trivially available,
however it was not known how relevant these results where to real image sequences. The
final synthetic scene was more complex. It shows a fly-through of the Yosemite national
park, however there is little occlusion, and none of the complex lighting effects that occur
in real scenes.

We introduce a simple modification that allows a ray tracer to generate ground-truth
motion fields for arbitrarily complex scenes. The source code for the modified ray tracer
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is available at http://heffalump.otago.ac.nz/�masondr/of/. We use the resulting ground-
truth motion fields to evaluate the performance of eight optical flow algorithms, six of
which were also tested by Barron et al. The three test sequences and their corresponding
ground-truth motion fields are also available.

2 What is Ground-Truth Optical Flow?

Horn and Schunck define optical flow as follows:

The optical flow is a velocity field in the image which transforms one image
into the next image in a sequence. As such it is not uniquely determined
: : : The motion field, on the other hand, is a purely geometric concept, with-
out any ambiguity - it is the projection into the image of three-dimensional
motion vectors [5].

In practice, specular effects, shadows, insufficient texturing, and occlusion make the un-
ambiguous recovery of the true motion field impossible. If these effects are present to
sufficient degree, the optical flow vectors produced can be uncorrelated to the ground-
truth motion field.

It would be possible to evaluate algorithm performance according to the definition
above by measuring how well the optical flow field transforms one image into the next.
However this is inadequate for 3D structure recovery. Horn and Schunck state: “One
endeavors to recover an optical flow that is close to the motion field” [5]. A more ap-
propriate measure is then the correlation between the calculated optical flow and the true
motion field. It should be noted that this measure is better suited to applications which
attempt to extract 3 dimensional structure, rather than image coding applications.

3 Generating the Ground-Truth Motion Field

The ground-truth motion fields were generated by modifying a public license ray tracer,
Mirage [2]. Mirage objects can be animated by specifying affine transformations which
describe their rigid motion from one frame to the next.

The motion field is generated during the ray tracing of two consecutive frames. The
entire process is illustrated in Figure 1. Rendering of the first frame begins by casting
rays from the camera into the scene. Whenever a ray strikes an object, the 3D position
of the intersection, the object, and the corresponding pixel position(x; y) are recorded.
Before the second frame is rendered, Mirage applies a transformation to each object. In
our modified version of Mirage, the transformation applied to each object is also applied
to each recorded ray-object intersection.

Once this has been completed, rays are cast from each new intersection point to the
camera. Simple geometry yields the new pixel position(x0; y0). A simple subtraction
then yields the ground-truth motion vector.

4 Error Metrics

Trying to summarize the performance of over a million flow vectors with a single num-
ber is a difficult task. It is further complicated by attempting to define a general, non-



British Machine Vision Conference 197

Figure 1: Geometry for calculating the the ground-truth motion field.

application specific measure. We felt simplicity was important for any error metric, even
if it was at the expense of more subtle characteristics.

Our first error metric is the difference in angle between the correct and estimated flow
vectors. We define

Angular Error= cos�1(ĉ � ê); (1)

wherec is the correct motion vector,e is the estimate optical flow vector, and^denotes
vector normalization.

The second metric is the average magnitude of the vector difference between the cor-
rect and estimated flow vectors for each pixel. This can be pictured as the magnitude
of the “correction image” that would have to be added to the calculated flow to get the
correct flow:

Magnitude of Difference= kc� ek: (2)

One of the more significant problems encountered in the calculation of optical flow is the
aperture problem. In order to measure how effectively each algorithm compensates for
this problem, we use an additional metric:

Error Normal to Gradient= k(c� e) � ĝ?k; (3)

whereg = ( @I
@x

(x; y); @I
@y
(x; y)) and ĝ? denotes the vector perpendicular toĝ. A large

error normal to the image gradient would suggest the algorithm does not compensate
adequately for the aperture problem.

5 Optical Flow Algorithms

Many of the algorithms reviewed in this paper were also reviewed and implemented by
Barron et al. [1], and are available via anonymous ftp fromftp.csd.uwo.ca in the
directory/pub/vision . Due to space restrictions we will only describe the algorithms
not mentioned in Barron et al.’s paper. Instead, the reader is referred to their paper for a
more detailed description, or to the original source for a complete description.
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5.1 Algorithms Implemented by Barron et al.

5.1.1 Anandan

In addition to testing the original algorithm, we also tested the performance of this al-
gorithm when a threshold was used to determine which flow vectors were calculated.
Thresholding occurred when the minimum confidence level was less than0:01.

5.1.2 Horn and Schunck

We have tested 4 versions of this algorithm. As well as Horn and Schunck’s original al-
gorithm, we tested the performance of this algorithm when a threshold based on the mag-
nitude of the image gradient was used:( @I

@x
)2 + ( @I

@y
)2 < 2:52. The original formulation

of this algorithm uses a two-point central difference approximation to image derivatives.
We also evaluated performance when a four-point central difference approximation was
used, and when this was used in conjunction with thresholding.

5.1.3 Lucas & Kanade

Four versions of this algorithm were tested. We have tested the original algorithm, and
a version which uses a thresholding technique developed by Simoncelli et al. . The
thresholding technique was based on a Bayesian interpretation of the original algorithm.
Simoncelli et al. have used this interpretation to derive a slightly different way of solving
the underlying equations. We have also evaluated this algorithm by itself, and when used
in conjunction with the Bayesian thresholding technique.

5.1.4 Nagel

We have tested the original algorithm, and a version which used a threshold based on the
magnitude of the image gradient. Thresholding occurs when( @I

@x
)2 + ( @I

@y
)2 < 2:52.

5.1.5 Singh

This algorithm consists of 2 stages. The first stage uses a region matching technique to
determine flow. The second stage propagates the flow to neighbouring pixels. Results are
reported for both stages.

5.1.6 Uras et al.

We have tested the original algorithm, as well as a version which uses a threshold based
on the determinant of the Hessian ofI(x; y; t). Thresholding occurs wheredet(H) � 1:0.

5.2 Algorithms not Implemented by Barron et al.

5.2.1 Camus [3]

This is a simple area matching algorithm that uses an exhaustive search over a small
neighbourhood, across the previousn frames. For each pixel position it calculates a value
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which indicates how likely it is that the pixel has moved into that spatio-temporal location.
A typical matching function is

match value=
X

i;j

kI(x+ i; y + j; t)� I(x+ Æx+ i; y + Æy + j; t+ Æt)k: (4)

Once the optimum match value has been found, the flow is calculated as1

Æt
(Æx; Æy). Two

versions of this algorithm were tested. The first uses only 3 frames for each calculation,
the second uses 15. Both algorithms used a 3x3 matching neighbourhood.

5.2.2 Proesmans et al. [6]

Proesmans et al. present a method similar to that of Horn and Schunck. The main dif-
ferences are that a matching process is incorporated into the constraint equation and a
method for dealing with discontinuous flows is introduced.

In order to evaluate the current flow estimate, Proesmans et al. look at the correspon-
dences suggested by the current flow estimate. For each point,(x; y), in the first image
the estimated optical flow,(u; v), can be used to find a corresponding point,(x+u; y+v),
in the second image. If the flow estimate is good then the brightness at these two points
should be similar. If the brightnesses are not the same then the flow estimate is moved
along the image gradients in order to correct for the difference.

A process known asanisotropic diffusionis used to smooth the flows. This means that
the local averages of the flow components are not simple averages but are weighted by a
consistency map. Unlike the normal smoothing process, this can maintain discontinuities
in the flow but still retains a high level of continuity in local regions.

Our implementation used a four level image pyramid to account for large flows, and
fifty relaxation iterations. The smoothness constraint,�, was set to 30.

6 Results

In this section we refer to each algorithm by the name of the author(s), followed by aT if
the algorithm used a threshold to restrict which flow vectors were calculated, or anM if we
are referring to a modified version of the algorithm. See Section 5 for a brief description
of any thresholding criteria or modifications. We have used the same parameters as Barron
et al. unless stated otherwise.

Three test sequences were used of varying complexity. The first sequence shows a
simple textured sphere rotating about its own axis. A similar scene was used by Horn &
Schunck [4]. A typical frame from this sequence is shown in Figure 2(a). A summary
of algorithm performance on this scene is displayed in Figure 3. Some example flow
maps taken from a small region of this scene are displayed in Figure 7. An office scene
is the subject of the second image sequence. The camera moves in the direction of its
viewing axis, at a constant velocity. Specular highlights and transparency are deliberately
included to simulate a real scene as much as possible. A typical frame is shown in Figure
2(b). Algorithm performances are summarized in Figure 4. The final sequence is set on
a simulated busy street corner. The camera follows a car as it turns into a side-street. A
typical frame is shown in Figure 2(c). Algorithm performances are displayed in Figure 5.

Up to this point, the image sequences have been noiseless (although slight aliasing
artifacts are introduced by the ray tracing process). To better simulate real data, the al-
gorithms were re-tested on the office sequence after a small amount of noise was added
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(a) Rotating Sphere Scene (b) Office Scene (c) Street Scene

Figure 2: Typical scenes from the test sequences. All image sequences were rendered at
200x200 resolution in 256 level gray-scale. The rotating sphere and office sequence are
60 frames long. The street sequence is 150 frames long.

to each image in the sequence. The noise was taken from a Gaussian distribution with
standard deviation 3, and was almost undetectable visually. Figure 6(a) shows how this
noise affected the Average Magnitude of Difference error metric.

The algorithms vary widely in execution times. The execution times required to ex-
tract a single flow map from a 200x200x256 gray level image sequence are displayed in
Figure 6(b). Obviously these timings are implementation dependent and should only be
used as rough guidelines. Timings are for a Pentium Pro 180.

7 Discussion

Overall, the algorithm based on Lucas and Kanade when used with a threshold had the
best performance. It consistently produces accurate depth maps, has a low computational
cost, and good noise tolerance. On the down side, it produces quite sparse depth maps.
Barron et al. also concluded that this algorithm had the best performance.

Proesmans et al.’s algorithm is the only algorithm with consistent, accurate perfor-
mance that produces a flow vector for each pixel. It provides reasonably accurate, consis-
tent results, with good noise tolerance at moderate computational cost.

Horn and Schunck’s algorithm also performs well provided the input images were
smoothed, and accurate approximations to the derivative were used. When these mod-
ifications were used, the average error was reduced by 2.5 times, and the error caused
by the addition of noise to the image sequence decreases by almost 5 times as illustrated
in Figure 6(a). These modifications were at the expense of a modest 17% increase in
computation time. Thresholding the resulting flow maps based on image gradient alone
produced a negligible reduction in average error but significantly reduced the density of
the flow maps. Many of the other optical flow algorithms also suffer from having no
thresholding method.

The second order differential method of Uras et al. performed very well on the two
complex scenes, but quite poorly on the rotating sphere scene. It has poor noise tolerance
although this was significantly improved with thresholding.

In general, the derivative based techniques proved superior to region matching. In
the rotating sphere scene, the ratio of Error Along Normal to Magnitude of Difference
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(a) Average Magnitude of Difference Error and Error
Along Gradient Direction

(b) Average Absolute Angular Error (c) Average Density

Figure 3: Results for the rotating sphere scene.

(a) Average Magnitude of Difference (b) Average Absolute Angular Error (c) Average Density

Figure 4: Results for the office scene.
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(a) Average Magnitude of Difference (b) Average Absolute Angular Error (c) Average Density

Figure 5: Results for the street scene.

(a) Percentage increase in the Magnitude of Difference error
metric, as a result of adding noise to the image sequence.
The noise had a Gaussian distribution with� = 3.

(b) Time (in seconds) required to extract a single flow map
from a 200x200x256 gray level image sequence. Note the
log scale.

Figure 6: Noise and Timing Results.
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(a) Ground Truth (b) Anandan et al. (c) Anandan et al. T (d) Camus (3 images)

(e) Camus (15 images) (f) Horn & Schunck (g) Horn & Schunck T (h) Horn & Schunck
M

(i) Horn & Schunck
MT

(j) Lucas & Kanade (k) Lucas & Kanade T (l) Lucas & Kanade M

(m) Lucas & Kanade
MT

(n) Nagel (o) Nagel T (p) Proesmans et al.

(q) Singh (step 1) (r) Singh (step 2) (s) Uras et al. (t) Uras et al. T

Figure 7: Some example flow maps. These are taken from a small section of the rotating
sphere scene.
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was significantly higher in all derivative based algorithms (with the exception of Uras et
al.’s algorithm). This indicates that derivative based algorithms are more susceptible to
the aperture problem in this type of scene. However, in the more complex scenes this
difference was not as apparent, indicating that perhaps the aperture problem is not as
significant in practice as in theory.

8 Conclusion

We have developed a method for producing ground-truth optical flow from synthetic
scenes of arbitrary complexity. This has allowed us to objectively evaluate the perfor-
mance of eight optical flow algorithms on complex scenes. We have also used this tech-
nique to investigate the effect of image noise on algorithm performance. We concluded
that Lucas and Kanade’s algorithm had the best overall performance. This is consistent
with the results of Barron et al. [1]. Proesmans et al.’s algorithm also performed well
and has the additional advantage of producing one flow vector for each pixel. Horn and
Schunck’s algorithm also had excellent results, as long as suitable approximations to the
derivative were used.

We have identified a number of issues with the error metrics used in this study which
warrant further investigation. First, the size of the error depends on the magnitude of
the flow. This is not consistent with our intuitive notion of what makes ‘good’ optical
flow. Second, averaging the individual errors means that a large error in a small region is
equivalent to small errors over a large region. Arguably, we would like the case with many
small errors to produce a lower error metric. Thirdly, the current method of comparing a
dense depth map with a sparse one is particularly unfair to the dense maps, since a simple
average is taken. Creating an error metric which satisfies all of these constraints would
inevitably be subjective to some degree. Application oriented error metrics may provide
a more promising approach.

Ideally, an algorithm’s performance should be evaluated by comparing its output with
ground truth. Unfortunately, determining the ground truth motion field for complex, real
scenes is an intractable problem. The use of complex, synthetic scenes brings us closer to
this ideal, and is a step towards better evaluation of optical flow algorithms.
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