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Abstract

A novel method is described for obtaining superior classification perfor-
mance over a variable range of classification costs. By analysis of a set of
existing classifiers using a receiver operating characteristic (ROC) curve, a
set of newrealisable classifiersmay be obtained by a random combination
of two of the existing classifiers. These classifiers lie on the convex hull that
contains the originalROC points for the existing classifiers. This hull is the
maximum realisableROC (MRROC).

A theorem for this method is derived and proved from an observation
aboutROC data, and experimental results verify that a superior classifica-
tion system may be constructed using only the existing classifiers and the
information of the originalROC data. This new system is shown to produce
theMRROC, and as such provides a powerful technique for improving clas-
sification systems in problem domains within which classification costs may
not be knowna priori. Empirical results are presented for artificial data, and
for two real world data sets: an image segmentation task and the diagnosis of
abnormal thyroid condition.

1 Introduction

A large fraction of decision support systems, particularly those used in medical diag-
nostics (e.g. diagnosis of cancer with digital mamography), are two-class pattern clas-
sification systems. Once a set of features and the functional form of the classifier have
been chosen, the classifier is designed to optimise some cost function. When the costs
of the different types of errors can be specified exactly, the optimum classifier may be
designed to minimise the expected risk [5]. The particular feature set and the functional
form chosen then define how well the performance of the classifier approaches the Bayes’
performance.

In many real world applications, however, that cost of different types of errors is often
not known at the time of designing the classifier. One also finds applications where the
costs might change over time. Further, some costs cannot be specified quantitatively. In
such situations we resort to specifying the classifier in the form of an adjustable threshold
and a receiver operating characteristic (ROC) curve obtained by setting the threshold to
various possible values. An example of such anROC curve is shown in Figure 1. In
the example, the classifier must classify a patient’s condition as either adverse or benign.
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Figure 1: Left: anROC curve for a medical diagnostic test for abnormal thyroid con-
dition. The true positive rate corresponds to the probability that a sick patient will be
diagnosed as sick, the false positive to the probability that a healthy patient will be diag-
nosed as ill. Right: theROC curves of two classification systems cross.

The data in the example was obtained from the UCI Machine Learning repository [12],
and represents the results of a number of diagnostic tests for abnormal thyroid conditions.
A linear classifier was used, producing a continuous output, and a threshold is placed
upon the output to determine the final classification. Two rates can be calculated for any
series of classifications: the true positive and false negative rates. When an adverse case
is correctlyclassified as adverse, a true positive has occurred, and a false negative when
a benign case isincorrectlyclassified as adverse. By varying the level of the threshold,
different degrees of true positive and false positive rates can be achieved, producing the
ROC.

TheROC curve has been shown to be a useful mechanism in comparing the perfor-
mance of different classifiers [7, 10, 9, 11, 18]. The area under theROC (AUROC) curve
is also known as the Wilcoxon statistic [7, 10]. Lovellet al, for example, use this statistic
as a criterion for feature selection in a large obstetrics problem involving48 features and
700; 000 cases.

AUROC, however, is a gross simplification of the information conveyed by aROC,
as noted by Hand in [7]. The costs of different operating points need to be taken into con-
sideration. Hand further suggests this to be an important factor when theROC curves of
the classification systems that are being considered cross. Such an example is illustrated
in Figure 1.

This paper describes a novel approach for combining classifiers to achieve desirable
operating points that do not fall on any of theROC curves of the available classification
systems. More specifically, we show that a convex hull may be formed, encapsulating the
‘best’ operating points of many classification systems. We provide a theorem to show that
an operating point on the convex hull is realisable in practice. Empirical results are pro-
vided for three classification tasks: artificial, medical diagnosis, and image segmentation.
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2 Realisable classifiers

2.1 An observation about points inROC space

We think of anROC curve as representing curve joining a set of points in anROC

space. A point(fpc; tpc) represents an existing classifierc, that classifier producing false
positives with a probabilityPr(falsepositive = fpc), and true positive with probability
Pr(truepositive = tpc).

Take two classifiers,ca andcb, each with distinct false positive and true positive rates.
These two classifiers are the end points of a straight line inROC space,Lab. The line
Lab defines a set of classifiers, i.e. point(fpcx ; tpcx) 2 Lab represents the classifier that
would produce those true positive and false positive rates.

We observe in this paper, that, given onlyca andcb, one may realise the output of
classifiercx by randomly choosing between the output ofca andcb. The probability of
choosing the output ofca over that ofcb is determined by the distance alongLab between
cx andca1.

Theorem 1 The realisable classifier. Two existing classifiers,ca and cb, produce true
positive and false positive rates(tpa; fpa) and (tpb; fpb) respectively for a series ofm
inputsx1::xm. In a 2 dimensional plot of false positive rate against true positive (ROC
space), call the straight line linking(fpa; tpa) and(fpb; tpb) Lab.

Any point(fpr; tpr) on Lab corresponds to the point that would be produced by a
classifierr. Call the set of classifiers corresponding ton points onLab,R = fr1; ::; rng.

Givenca andcb, the output of a realisable classifier,ri 2 R, for any inputxj , is a
random variable that assumes the output of one or other ofca andcb with probability

Pr(ri(�) = cb(�)) =
fpri � fpa

fpb � fpa

Pr(ri(�) = ca(�)) = 1� Pr(ri(�) = cb(�));

wherefpri is the false positive rate ofri.

The proof of Theorem 1 is straightforward. To construct the output of a realisable
classifierriwith false positive ratefpri , randomly select between the outputs ofca andcb
with the given probability. The expected false positive rate produced by doing so is

E[fp] = Pr(ri(�) = cb(�)) � fpb + Pr(ri(�) = ca(�)) � fpa

=
fpri � fpa

fpb � fpa
� fpb + (1�

fpri � fpa

fpb � fpa
) � fpa

=
fpb(fpri � fpa) + fpa(fpri � fpa)� fpa(fpb � fpa)

fpb � fpa

=
(fpb � fpa)(fpri � fpa) + fpa(fpb � fpa)

fpb � fpa
= fpri Q:E:D:

1This technique has parallels in classical statistics. When estimating the power of a hypothesis test, the
sample space of which has discrete probabilities, randomised decision rules could be employed. This allowed
the estimation of specific power values, even when an observed estimate was unavailable [6, 17], in the context
of using k-fold cross validation techniques to produce accurateROC curves when data is scarce.
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Figure 2: An example of a realisable classifier. The pointri on the line joiningca andcb
may be realised by the application of Theorem 1

And similarly for the true positive rate.
Figure 2 illustrates an example of a realisable classifier. The realisable classifierri,

with false positive ratefpri = 0:4, lies on the line between classifiersca andcb, with false
positive ratesfpa = 0:3, andfpb = 0:5 respectively. To realise the output ofri, calculate
the probabilities for selecting the outputs of the existing classifiers using Theorem 1,

Pr(ri(�) = cb(�)) =
fpri � fpa

fpb � fpa

=
0:4� 0:3

0:5� 0:3
= 0:5

Pr(ri(�) = ca(�)) = 1� Pr(ri(�) = cb(�))

= 0:5:

To obtain the classification output ofri on a set of unseen cases,x = fx1; ::; xng, the
classifications ofca andcb would be calculated

ca(x) ! f(x1 = Adverse); (x2 = Adverse); (x3 = Benign); ::; (xn = Adverse)g

cb(x) ! f(x1 = Benign); (x2 = Adverse); (x3 = Adverse); ::; (xn = Benign)g:

Using the probabilities calculated above, the output ofri is then determined by randomly
selecting one of the outputs, like so:

ri(x) ! fca(x1); cb(x2); ca(x3); ::; cb(xn)g

ri(x) ! f(x1 = Adverse); (x2 = Adverse); (x3 = Benign); ::; (xn = Benign)g:

2.2 The maximum realisableROC

We can now realise all classifiers that lie on straight line segments with end points formed
by existing classifiers. What advantage can be gained by this? Take the example illus-
trated in Figure 3. TheROC is produced using a linear model on the1 dimensional



310 British Machine Vision Conference

classification problem shown. The steps in theROC occur because the linear model
cannot capture the multi modal nature of the data.
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Figure 3: Left: an example of2 class multi modal data. This data will present problems
to linear classification systems. Right: theROC curve produced by varying the threshold
on the output of a linear model of the multi modal data shown. TheROC has a step like
appearance because the linear model fails to capture the nature of the data.

We currently have a set of classifiers provided by the linear model, corresponding to
the range of false positive rates from0 to 1. The currentROC curve is produced by this
set, and can be used to select the best available classifier for a particular false positive rate.
It is possible, however, to obtain a new set of classifiers that will give better performance
in terms of true positive rates than those provided by the linear model.

Calculate a convex hull [14] such that it contains all the points on the currentROC.
The vertex points of the convex hull will be points corresponding to existing classifiers
generated by the linear model. The facets of the hull are line segments with an existing
classifier at each end point. We know from Theorem 1 that all the points on these lines
represent realisable classifiers. It is immediately obvious that a realisable classifierr, with
false positive ratefpr, lying on a facet of this hull will have a greater true positive rate
than the classifier with false positive ratefpr found on the originalROC.

Given a classification algorithm such as the linear model, and theROC curve pro-
duced by this, then the convex hull enclosing thisROC represents a set of realisable
classifiers that will at all times be either equal or superior to those of the linear model,
and that are generated by a subset of the original classifiers. The convex hull describes
the maximum realisableROC (MRROC) given the available existing classifiers.

3 Experimental results

3.1 Artificial data

Multi modal data was generated for the1 dimensional,2 class classification problem of
Figure 3. A linear model was trained using5000 training examples. By varying the
threshold used on the output of the model when presented with5000 test cases, theROC
curve of Figure 3 was obtained. The true positive rate was the rate of correct classifications
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of class1, the false positive rate was the rate of cases of class2 being incorrectly classified
as belonging to class1..
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Figure 4: Left: the convex hull containing theROC of a linear model is found. This
hull is theMRROC of the set of realisable classifiers produced from the set of existing
linear classifiers. Right: theMRROC plotted for an unseen data set. TheMRROC is
consistent with that predicated.

Using theqhull software [1] the convex hull containing all the points in theROC was
obtained. Each vertex in the hull represented an existing classifier. Each of these existing
classifiers was defined by the threshold used, on the output of the linear model, to yield
a final classification for each test case. The hypothesis to being tested was that all the
points on the facets of the convex hull, corresponding to classifiers that were not currently
available, could be realised by application of Theorem 1 of this paper to the set of vertex
classifiers. TheMRROC indicates the expected true positive rates, over the complete
range of false positive rates, that one might hope to achieve using this approach.

Figure 4 plots theMRROC over theROC of the linear model on the test data.

To validate the hypothesis that the characteristic curve indicated by theMRROC

could actually be obtained, a third data set of5000 validation cases was generated. This
validation data was processed by the linear model. The thresholds corresponding to the
existing classifiers in the convex hull were each applied to the outputs of the linear model,
producing a number of sets of classifications. For any point on a facet of the hull, a
classification for an individual validation case could be obtained by randomly selecting
one of the classifications made by the two existing classifiers at the end points of the facet.
As described above, this methodology leads to the realisation of the set of classifiers on
the facets of the hull.

Figure 4 plots the characteristic curve given the set of realisable classifiers indicated
with theMRROC against theROC of the linear model, on the validation data set. It can
clearly be seen that the set of realisable classifiers produce anROC consistent with the
MRROC, and superior to theROC of the linear model. TheMRROC appears slightly
jagged. This is entirely consistent with the nature of the classifiers used to form it. The
classifiers are random variables, whose central tendency will be to lie on theMRROC.
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3.2 Thyroid data

A medical data set describing patients with abnormal thyroid conditions was obtained
from the UCI machine learning repository [12]. The data was originally contained7200
instances, with had3 classes,hyperthyroid, hypothyroid, andnormal, and21 features. In
this experiment, the classes were merged to form2: AdverseandBenign. The data was
randomly split into3 data sets, Train, with3800 instances, Test, with1700 instances, and
Unseen, with1700 instances.

Two classification systems were made, System 1 and System 2, using a simple linear
model trained with a single feature to describe the data. Figure 1 shows theROC curves
for both classification systems using the Test data to calculate the true and false positive
rates (note that the curves cross).

Figure 5 shows theMRROC predicted by the convex hull containing the TestROC

curves. The vertex points on the hull corresponded to existing classifiers. It was required
to validate the hypothesis that all the points on the convex hull were realisable classifiers
(by Theorem 1) and could be achieved in practice, resulting in theMRROC.

TheROC curves for both of the original systems, and for the set of realisable classi-
fiers on the hull are plotted for the Unseen data in Figure 5. TheMRROC produced by
application of Theorem 1 is consistent with that predicted, validating the hypothesis.
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Figure 5: Left: the convex hull over both originalROC curves. This is the predicted
MRROC. Right: theMRROC plotted for the Unseen data set. TheMRROC is
consistent with that predicated by the convex hull over the Test dataROC curves. The
ROC curves for System 1 and System 2 using the Unseen data are plotted for comparison
with theMRROC.

3.3 LandSat data

A LandSat image segmentation dataset, originally used in the Statlog project, was ob-
tained from the UCI repository [13, 12]. The data consisted of multi-spectral values of
pixels in3 � 3 neighbourhoods in a satellite image. A classification was given with the
central pixel of each neighbourhood. Originally there were6 classes:red soil, cotton
crop, soil with vegetation stubble, grey soil, damp grey soil, very damp grey soil. In this
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experiment, the latter3 classes have been combined into one class,grey soil, and the first
3 into other. The objective is to identify cases ofgrey soil, i.e. a correct classification of
an example of this class is atrue positive. As before, the data was split into3 data sets:
Train, with 3000 examples, Test with1435 examples, and Unseen, with2000 examples.
The data had36 dimensions, each with values in the range0::255.

A simple Bayes classifier was used [3], and the data was discretised using entropy
based discretisation described in [4]. Feature subset selection was carried out usingse-
quential forwards float selection[15, 8]. Error rate (zero-one loss), was used as a perfor-
mance measure for subset selection. The error rate was estimating using the Train and
Test sets. Improvements in performance were judged statistically significant using Mc-
Nemars Test [2]. Selection was halted when no statistically significant improvement in
classification accuracy could be achieved. The5 feature subsets found during selection
were saved.

Using the Train and Test data, theROC curves for the classification systems corre-
sponding to each feature subset were evaluated, Figure 6. It can be seen that when the
costs vary from error rate, no single feature set produces a superior classification system.
TheMRROC was predicted by fitting the convex hull over the5 curves. The classifiers
at each vertex were saved.

In Figure 7 theROC curves for the5 classification systems and theMRROC on the
Unseen data set are presented. TheMRROC obtained by application of Theorem 1 is
consistent with that predicted, and is clearly superior to any of the individual systems. The
MRROC guarantees a maximisation of the Wilcoxon statistic [7], given the available
classifiers.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e 
po

si
tiv

e 
ra

te

16      
16,23   
16,23,24
23,24   
8,23,24 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e 
po

si
tiv

e 
ra

te

16      
16,23   
16,23,24
23,24   
8,23,24 
MRROC   

Figure 6: Left: the5 feature subsetROCs on the Test data. Right: theMRROC pre-
dicted by the TestROCs

4 Conclusions

This technique for producing enhanced performance given a set of existing classifiers and
theROC formed by them may have profound implications for designers of classifica-
tion systems in domains where classification costs may not be knowna priori, or may
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Figure 7: Left: the5 feature subsetROCs in the Unseen data. Right: theMRROC

obtained on the Unseen data, by application of Theorem 1 to the existing classifiers found
at the vertices of the TestMRROC.

change with time. It has been shown theoretically that an enhanced performance curve,
theMRROC can be achieved by application of the realisable classifier theorem, and em-
pirical results provided, on both artificial and real world data, to validate this hypothesis.
Given twoROC curves that cross, theMRROC produced using both will be superior to
either alone, and may realise operating points with true positive rates that were previously
unavailable.

In the first experiment, with multi modal artificial data, the realisable classifiers lying
on the facets of the convex hull represent operating points that are not attainable with the
original linear classification system. These are not obtained at the expense of clarity or
simplicity, nor do they require some degree of expert knowledge to be teased out of the
system. The experiments using real world data indicate that this method is both applicable
and feasible in such applications.

It is planned to apply this technique to a number of existing problems, such as those
reported in [10, 9, 11]. Currently we are examining the application of this methodology to
feature selection problems, having developedParcel[16], a novel technique for selecting
multiple feature sets across a range of costs.
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