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Abstract

Autocalibration is a difficult problem. Not only is its computation very noise-
sensitive, but there also exist many critical motions that prevent the estima-
tion of some of the camera parameters. When a “stratified” approach is con-
sidered, affine and Euclidean calibration are computed in separate steps and
it is possible to see that a part of these ambiguities occur during affine-to-
Euclidean calibration.

This paper studies the affine-to-Euclidean step in detail using the real
Jordan decomposition of the infinite homography. It gives a new way to
compute the autocalibration and analyzes the effects of critical motions on
the computation of internal parameters. Finally, it shows that in some cases, it
is possible to obtain complete calibration in the presence of critical motions.

1 Introduction

This article raises the problem of autocalibration of a camera undergoing rigid motions
under the assumption of constant intrinsic camera parameters.

Many methods of autocalibrating monocular and stereo sensors have been developed
in the recent years. Faugeras, Luong and Maybank [5] propose to solve the Kruppa equa-
tions from points matches in 3 images. However, this requires non-linear resolution meth-
ods. An alternative solution consists to first recover affine structure and then solve for the
camera calibration using this. This “stratified” approach [4] can be applied to a single
camera motion [8] or to a stereo rig in motion [3] and requires no knowledge about the
observed scene.

Affine calibration has already been studied by many authors and amounts to recover-
ing the equation of the plane at infinity, or equivalently the infinite homographies between
the views. Many classes of motions have been treated and theoretically solved : pure
translation [9], rotations around the camera’s center of projection [6], planar motions [1]
[2] and general displacements [11] [7].

The infinite homographies then allow the Euclidean calibration to be computed and
it is well known that this computation is possible when at least 2 motions with non zero
rotations and non parallel rotation axes are available. However, it is not always possible
to have such motions. One solution is to add a constraint on the internal parameters (e.g.
that the image axes are perfectly orthogonal or that the aspect ratio is known). But, even in
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this case there exist some critical motions [10] which prevent an unambiguous calibration.

The main contribution of this article is a detailed analysis of affine-to-Euclidean au-
tocalibration, based on the real Jordan decomposition of the infinite homographies. This
provides a new way to calculate the Euclidean calibration. Critical motions (where the
intrinsic parameters can not all be recovered) are also studied. However, in some cases, if
the correct constraint is applied, the problem can be solved and all of the intrinsic param-
eters can be calculated.

2 Preliminaries

A pinhole camera projects a pointM from the 3-D projective space onto a pointm of
the 2-D projective plane. This projection can be written as a3 � 4 homogeneous matrix
P of rank equal to 3 :

m ' PM

where' is the equality up to a scale factor. If we restrict the 3-D projective space to
the Euclidean space, then it is well known thatP can be written as :

P = (KRKt)

R andt are the rotation and translation that link the camera frame to the 3-D Euclidean
one. The most general form for the matrix of intrinsic parametersK is :

0
@

� r� u0
0 k� v0
0 0 1

1
A

where� is the horizontal scale factor,k is the ratio between the vertical and horizontal
scale factors,r is the image skew andu0 andv0 are the image coordinates of the center
of projection.

3 From affine to Euclidean

The affine calibration enables to calculate the infinite homographyH1 between the im-
ages taken with a camera to calibrate, before and after the rigid motion. Once this infinite
homography is obtained, it is possible to recoverK thanks to the relation :

H1 = KRK�1 (1)

whereR is the rotation of the motion (the Euclidean frame is chosen to be the camera
frame). A classical way to solve this equation was first proposed by R.Hartley [6] and
consists to solve the equation :

HT
1
CH1 = C (2)

whereC = K�TK�1 is the image of the absolute conic.K is then obtained by
Cholesky decomposition ofC. It is well known that the solutionsC of (2) define a 1-
parameter family. This ambiguity can be eliminated if at least 2 motions with non parallel
rotation axes are considered.
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We propose another way to solve (1) with an analysis which allows us to identify crit-
ical motions and to partially solve for calibration in these particular cases. This analysis
is based on the real Jordan decomposition which has already been studied in [2] in the
case of projective displacements. The approach takes into account the fact that (1) defines
H1 as the conjugate of a rotationR. In an appropriate frame,R can be reduced to the
simple formJ� :

J� =

0
@

cos(�) � sin(�) 0
sin(�) cos(�) 0

0 0 1

1
A

Then, there exists a3� 3 matrixS such that :

H1 = SJ�S
�1 (3)

This is a real Jordan decomposition ofH1.

3.1 Analysis of the real Jordan decomposition

3.1.1 Ambiguity

In (3),� is uniquely determined. However,S is not. Indeed, ifS satisfies (3) andP is any
invertible matrix which commutes withJ�, we have :

H1 = SJ�PP
�1S�1

= SPJ�P
�1S�1

= (SP)J�(SP)
�1

So,S0 = SP satisfies (3) too. The converse is also true. That is, ifS1 andS2 both
satisfy (3), thenS�1

2
S1 is a matrix which commutes withJ�. It can be easily shown that

such a matrix can be written :

Pa;b;c =

0
@

a �b 0
b a 0
0 0 c

1
A

Let Q1 be an orthogonal matrix such thatR = QJ�Q
T . (1) gives a real Jordan

decomposition forH1 :
H1 = KQJ�(KQ)�1

Furthermore, ifS has been calculated by a real Jordan decomposition ofH1 (we will
see later how to obtain it), we have, with respect to what has been shown previously, the
following relationship :

SPa;b;c =KQ (4)

Then,

(KQ)(KQ)T = (SPa;b;c)(SPa;b;c)
T

And so, byQQT = I,

1Q is the transformation which enables to express the rotation in a canonic frame where the rotation axis is
thez-axis.
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KKT = S

0
@

a2 + b2 0 0
0 a2 + b2 0
0 0 c2

1
AST

Let be� = a2 + b2 and� = c2. We have finally :

KKT = S

0
@

� 0 0
0 � 0
0 0 �

1
AST (5)

3.1.2 Particular forms ofS

For any motion, the relation (4) implies that the form ofS is :

S = KQP�1a;b;c = KQPa0;b0;c0

wherePa0;b0;c0 = P�1a;b;c commutes withJ�.
When the rotation component of the displacement is performed around an axis parallel

to the basis axes of the camera,S takes special forms :

� If the rotation axis isparallel to the horizontal axis of the camera :

Q =

0
@

0 0 1
1 0 0
0 1 0

1
A and S ' Sx '

0
@

� � 1
� � 0
� � 0

1
A (6)

� If the rotation axis isparallel to the vertical axis of the camera :

Q =

0
@

0 1 0
0 0 1
1 0 0

1
A and S '

0
@

� � r
k

� � 1
� � 0

1
A

In practice,r is often negligible in comparison withk and we can consider that :

S ' Sy '

0
@

� � 0
� � 1
� � 0

1
A (7)

� Finally, if the rotation axis isorthogonal to the image plane, Q is the identity
and :

S ' Sz '

0
@

� � u0
� � v0
0 0 1

1
A (8)

We can observe that, in these 3 cases, the structure ofS is independent of any ambi-
guity in the real Jordan decomposition. It will be shown later that these cases correspond
to critical motions for affine-to-Euclidean calibration.
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3.2 Affine-to-Euclidean calibration

The real Jordan decomposition can easily be obtained from the eigenvectors ofH1.
Indeed, letfei�; e�i�; 1g be the eigenvalues ofH1

2 andu1, u2 = �u1 andu3 be the
associated eigenvectors.

If v1 = u1+u2, v2 = i(u1�u2) andS = (v1v2u3), then we haveH1 = SJ�S
�1.

3.2.1 Resolution of (5)

As we have seen previously, given an infinite homographyH1 between the images of the
same camera, it is possible to calculate its real Jordan decomposition and hence a matrix
S such thatH1 = SJ�S

�1. Then, it was shown thatS should satisfy (5). The calibration
process consists of solving this equation which can be written as a system of 6 equations
with 7 unknowns (a, k, u0, v0, r, � and�) :

�2 + �2r2 + u0
2 � S1;1

2 �� S1;2
2 �� S1;3

2 � = 0 (9)

k2 �2 + v0
2 � S2;1

2 �� S2;2
2 �� S2;3

2 � = 0 (10)

1� S3;1
2 �� S3;2

2 �� S3;3
2 � = 0 (11)

r k �2 + u0 v0 � S1;1 �S2;1 � S1;2 �S2;2 � S1;3 � S2;3 = 0 (12)

u0 � S1;1 �S3;1 � S1;2 �S3;2 � S1;3 � S3;3 = 0 (13)

v0 � S2;1 �S3;1 � S2;2 �S3;2 � S2;3 � S3;3 = 0 (14)

It is clear that this system cannot be solved just as it is (there is one unknown too
many). We must either consider a constraint on one unknown, or add equations from
several motions (with non parallel rotation axes).

If we want to calibrate with a single motion or with planar motions (where all rotation
axes are parallel), a constraint on the internal parameters must be imposed. Commonly
used constraints are eitherk = k0 or r = 0.

General resolution

If the matrixS does not have one of the forms expressed in 3.1.2, the system can then be
solved :

� if the constraintr = 0 is used, the intrinsic parameters are uniquely defined.

� if the constraintk = k0 is chosen, there are 2 sets of solutions : they correspond to
the 2 solutions� of a second degree equation. We keep only the one with smallest
jrj.

Now consider the degenerate cases.

Degenerate cases

� Horizontal rotation axis. We haveS ' Sx and so,S3;3 = 0 andS2;3 = 0 (see
(6)) : (11) gives� andu0 andv0 can then be computed with (13) and (14).

2We suppose thatH1 is normalized such that its determinant is equal to 1.0. Since it is conjugate to a
rotation matrix, it has one real and one complex conjugate pair of eigenvalues, all of unit modulus.
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Figure 1: example of critical motion : vertical rotation axis

– if we imposer = 0, (10) givesk�. However, (9) can’t give either� or �.

– if k = k0 is considered,�2 + �2r2 and�2r can be calculated directly and
solved to giver, �u = � and�v = k�.

� Vertical rotation axis. This is the case whenS ' Sy, which is similar to the
previous one. We haveS3;3 = 0.

– if r = 0, we haveS1;3 = 0 and then all parameters exceptk andk� can be
evaluated.

– if k = k0, S1;3 = r
k

leads to a total resolution of calibration

� Rotation axis orthogonal to the image plane.We haveS ' Sz (S3;1 = 0 and
S3;2 = 0).

It is the worst critical case in so far asu0, v0, k andr can be calculated, but�
remains always undetermined, whatever the constraint may be.

As a conclusion, we saw that the problem of affine-to-Euclidean calibration could be
easily solved in particular cases (single motion, all parallel axes rotations3).

We also showed that using the constraintk = k0 allowed us to avoid critical cases :
there remains then just one real critical motion (rotation axes orthogonal to the image
plane).

4 Experiments and results

4.1 Description

In this section we apply our autocalibration algorithms to synthetic data in order to analyse
the effect of different kind of motions on the computation of autocalibration. 3-D points
were generated and projected onto the cameras of a virtual stereo rig4 performing different
kind of motions. Gaussian noise of 1-pixel standard deviation was added to the data.

3In this case, it is possible to calculate a matrixS that satisfies the real Jordan decomposition of each infinite
homography.

4Intrinsic parameters of each camera were constant.
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For simplicity, we show results only for the calibration of the left camera of the rig.
The actual intrinsic parameters are :

K =

0
@

715 0 140
0 995 275
0 0 1

1
A

The aim of this experiment is not to obtain accurate computation of intrinsic param-
eters, but to show that if the constraintk = k0 is used, there is only one critical kind of
motions for the affine-to-Euclidean calibration (instead of three) : motions whose rotation
axes are orthogonal to the image plane.

4.2 Results

First, projective displacementsDproj are calculated from point correspondences and epipo-
lar geometry with the method described in [7]. Then, the equation of the plane at infinity
is calculated and the infinite homographiesH1 associated to the left camera are derived.
Our affine calibration algorithms are similar to [1] and [7] and cope with general and
planar motions (in this case, we need at least 2 motions). Finally, the real Jordan de-
composition of eachH1 is calculated and the resolution of (5) enables us to obtain the
complete camera calibration.

We show the results on 4 motion sequences (each consisting of 5 motions) :

� sequence 1 : non singular general motions

� sequence 2 : non singular planar motions

� sequence 3 : planar motion with a horizontal rotation axis

� sequence 4 : planar motion with a vertical rotation axis

The following table exhibits the matricesH1 andS obtained for the first motion of
each sequence. It confirms the particular forms ofS obtained for critical motions.

G1 S

sequence 1

0
@

0:778 0:135 315:085
�0:703 0:768 354:918
�0:000 �0:000 1:018

1
A

0
@

0:301 �0:902 1:000
1:430 �0:298 �1:184
0:001 0:001 0:001

1
A

sequence 2

0
@

1:014 �0:086 �161:587
0:254 1:006 �129:024
0:000 0:000 0:891

1
A

0
@

2:750 �0:979 1:000
0:350 �2:859 �3:197
�0:001 �0:004 0:002

1
A

sequence 3

0
@

1:003 0:034 �8:576
0:008 1:044 �297:574
0:000 0:000 0:875

1
A

0
@

�0:112 0:034 1:000
�0:414 �0:904 0:037
�0:001 0:000 0:000

1
A

sequence 4

0
@

1:009 0:003 �214:246
0:116 1:003 �26:163
0:000 0:000 0:903

1
A

0
@

0:879 �0:327 �0:007
�0:073 �0:360 1:000
�0:000 �0:001 0:000

1
A

The results of the computation ofK from the previous matricesS are as follows :
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� with the assumptionr = 0, only the first two sequences allow us to calculateK :

�u �v k = �v
�u

u0 v0

sequence 1 722:5 1002:6 1:388 126:2 280:0
sequence 2 695:7 939:50 1:350 147:5 273:3
sequence 3 821:0 978:8 1:192 138:05 294:18
sequence 4 716:43 702:28 0:980 135:05 275:62

� the assumptionk = 995

715
� 1:39 allows us to calculateK in all sequences :

�u �v r u0 v0
sequence 1 721:8 1007:8 �0:0164 139:7 255:4
sequence 2 691:8 966:0 �0:0137 153:9 241:0
sequence 3 700:8 978:6 �0:0272 117:6 293:4
sequence 4 712:5 994:5 0:0046 127:8 283:7

From these experiments, we can see clearly that thek-constraint allows us to calibrate
even in the case of critical motions. With ther-constraint, we can see that significant
errors are made in�u for sequence 3, and in�v for sequence 4.

5 Conclusion

We have described a method for solving the problem of affine-to-Euclidean calibration,
based on the real Jordan decomposition ofH1. This allows us to express the ambiguity in
the computation of the absolute conic (and also, the intrinsic parameters) as a 1-parameter
family. Although this ambiguity can be solved when many motions with non parallel
rotation axes are used, it can not when motions are planar or when we dispose of a single
motion. In these cases, we showed that an assumption should be made on one of the
internal parametersr or k.

Besides, we showed the existence of 3 classes of critical motion. We saw thatr andk
didn’t have the same role in the resolution of the equations : in particular, the knowledge
of k allows us to cope with 2 of the 3 critical motions. Experiments on noisy synthetic
data confirmed the theoretical results and proved it was possible to calibrate a camera in
some of the special cases. Experiments we have made on real data (not shown) seem to
confirm that in general resolution of the equations with thek-constraint is relatively stable
even when the rotation axis is near to the horizontal or vertical axes of the camera.

However, the analysis we made here is only qualitative : we studied which parame-
ters could be obtained for each kind of critical motion. We are currently studying more
quantitative extensions to this work which try to analyze the precision and stability of the
parameter computation as a function of the motion.
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