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Abstract

When using a gradient-based method to determine the optical flow field for
an image sequence, it is generally appreciated that some spatial pre-filtering
of the images is usually needed, particularly for large motion values. How-
ever the characteristics of the filter are not generally given.

In this paper we analyse the motion measurement from the point of view
of sampling theory. We show how an aliasing problem can arise due to under-
sampling in the temporal domain, and how this problem can be alleviated by
appropriate post-sampling spatial filtering. We also demonstrate a connec-
tion between this filtering and the methods used to generate the spatial and
temporal image intensity gradients.

1 Introduction

In all forms of optic flow measurement, if accurate measurements are required, we find
that some form of initial estimate of the likely range of motion values is needed; thus
there is an inherent bootstrap problem. For block-based methods, either optimisation
techniques are used [2, 7], or a full search is carried out (e.g. using phase correlation
techniques[9]). In the former case, some form of pre-filtering is generally used in order
to remove local minima, whereas in the latter case, some maximum size has to be set for
the region that is to be searched.

There is an equivalent problem for gradient-based methods; thus for example Tekalp[8]
notes (p. 85) that “Spatial and temporal pre-smoothing of video with Gaussian kernels
usually helps gradient estimation”; Wenget al. [10] specify a3�3 filter, but do not spec-
ify the weights or justify the choice of mask size. This begs the questions: (a) what type
of kernel should we choose and (b) how much filtering (how wide a kernel should we
use)?

One way of looking at these problems is from the point of view of sampling theory.
From this viewpoint, we find that image motion can result in temporal aliasing (briefly
discussed in [1]), in particular when estimating the temporal image gradient. In other
words, the temporal sampling frequency (the frame rate) is too low. However, we also
find that the temporal aliasing problem can be mitigated by an appropriate level of spatial
filtering.
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A subsidiary issue is the method used for estimating the image intensity gradients.
Generally a simple forward or central difference is used: these have frequency responses
that are far from that of an ideal generator. We show that the use of a more sophisticated
estimator can improve the accuracy of the result.

In the next section, we show why image motion causes temporal aliasing, and how to
avoid the problem by spatial filtering. This is followed in Section 3 by a discussion on the
calculation of derivatives. In Section 4 we show how both the amount of filtering and the
accuracy of the calculation of the derivatives affect the accuracy of the motion estimation.

2 Temporal aliasing and how to avoid it

In this section we discuss two points. Firstly, in an image sequence in which there is
motion of large magnitude, we find that there is a likelihood of temporal aliasing, whose
severity increases with the magnitude of the motion. This causes a problem for the esti-
mation of the temporal derivative. Secondly, the effects of this aliasing can be removed
by appropriate spatial low-pass filtering.

To make the analysis simpler, we consider an image sequence with one spatial di-
mension. However it can easily be generalised to a two-dimensional image sequence: the
single spatial axis of the analysis can be thought of as being aligned in the direction of
the spatial intensity gradientrh. Since there is no intensity variation in the perpendicu-
lar direction (to a first-order approximation), we ignore the effects of temporal aliasing in
this direction.

Sampling in the spatial domain does not affect the arguments that follow, except in-
sofar that spatial sampling limits the extent of the spatial frequency content.

2.1 Temporal aliasing due to motion

Consider a one-dimensional time-varying imageh(x; t) of a scene under constant illumi-
nation moving with (unknown) velocityv. Thus for this special case we can say that

h(x; t) = h(x� vt)

Hence ifH(�) is the 1-D transform of the stationary imageh(x), the Fourier transform
H(�; f) of h(x; t) can be written as

H(�; f) = H(�)�(v� + f)

where�(v�+ f) is the 1-D Dirac delta function embedded in two dimensional frequency
space. ThusH(�; f)is non-zero only on the linef = �v�. This is illustrated in Fig. 1(a),
which shows where the spectral components will lie in the��f plane for different veloc-
ities. Note thateach spectrum excurses by the same amount in the�-direction, whereas
the excursions in thef-direction increase in proportion to the velocityv.

If the image is sampled in the time and spatial domains with sampling frequenciesfs
and�s respectively, the spectrum ofH(�; f) in Fig. 1(a) will be replicated in thef- and
�-directions at intervals offs and�s respectively. This is illustrated for a single velocity
in Fig. 1(b), for a motion of 4 pixels / frame, and with a spatial spectrumH(�) extending
to�3=8�s.
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Figure 1: Spectra of image with uniform motion

The temporal spectrum at a particular positionx0 is given by the 1-D Fourier trans-
formHx0(f) of h(x0; t):

Hx0(f) =
1

v
ei2�fx0=vH

�
�f

v

�
(1)

This corresponds to a projection of the 2-D spectra onto thef-axis, from which we can
see that the contributions from the various temporal replications will overlap;i.e. tempo-
ral aliasing1 will occur. Note that in the converse situation,i.e. for the spatial spectrum
at a particular time instant, there is no equivalent problem because the effect of image
motion is to “stretch” the spectrum in thef-direction only.

The temporal aliasing will potentially affect any temporal filtering operations, such as
the calculation of the temporal image gradient@h

@t
. The problem can happen for values of

v greater than 1 pixel/frame, and will clearly get worse with increasingv, since from (1)
the spectrum is “stretched” in the temporal direction by an factor ofv.

2.2 Spatial filtering can remove temporal aliasing

In conventional time-domain signal processing, temporal aliasing is removed by filter-
ing the signal with a suitable analogue low-pass filter, with a cutoff frequency offs=2,
before it is sampled. The cutoff frequency of this filter is such that no overlapping of
the replicated spectra can occur. In the case of image sequences, temporal filtering be-
fore temporal sampling is problematic, since temporal sampling usually happens at the
moment of acquisition.2 However, we can see from Fig. 1(b) that the temporal aliasing
can nevertheless be removed by an appropriatespatialfilter, shown in Fig. 2. When the
replicated spectra are projected onto thef-axis, we can see that they no longer overlap.

1Some authors (e.g.[4]) use the term “aliasing” to refer to the spectral replication resulting from sampling,
rather than to the spectral interference that can result. Although the former is a more logical usage, the latter is
more widespread, and is used here.

2Perhaps we should qualify this by noting that, for many cameras, some temporal filtering is effected by the
temporal aperture of the camera. This typically has a frequency response ofsin(�f=fs)=(�f=fs), wherefs
is the frame rate. This response is far from ideal, but is at least acting in the right spatial direction.
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The required spatial cutoff frequency to achieve this must be less than�s=2v. Thus, for
“perfect” filtering, we need some estimate of the maximum likely image motion.
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Figure 2: Spectrum of signal after low-pass spatial filtering

The penalty for such filtering can be severe. Since the motion measurement is per-
formed on the filtered image, inaccuracies can be expected near objectboundaries. Thus
some iterative approach is usually required, in which the motion is compensated for after
each stage, so that the filtering can be made progressively less severe.

2.3 Practical filtering strategies

From the foregoing, the ideal spatial filter would be an ideal 1-D low-pass filter with a
cutoff frequency of�s=2v, acting in the direction of motion. In practice, of course we
know neither the magnitude or direction of the motion in advance. We might therefore
assume some upper limitvu for the likely motion magnitude, and use a 2-D isotropic
filter, with cutoff frequency of�s=2vu. Some practical requirements are:

� The response should be as close to zero as possible throughout the stop-band; how-
ever, in the pass-band, the accuracy of the response is less critical.

� The filter should be efficient to implement, which implies that (a) the filter should
be separable into 1-D components, and (b) the number of coefficients for the 1-D
filter should not be too large.

Anandanet al. [1] noted that the aliasing problem is reduced if a hierarchical motion
measurement method is used, since spatial subsampling in effect reduces the image mo-
tion magnitude by the subsampling factor.

3 The calculation of derivatives in sampled image
sequences

Consider a 1-D signalh(t). If it is to be sampled at a frequencyfs, it should have no fre-
quency components abovefs=2. Thus the frequency response of the ideal differentiator,
D(f), is given by

D(f) = i2�f; jf j < fs=2
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By comparison, the forward and central difference methods that are usually used in image
processing have frequency responsesDF (f) andDC (f) respectively:

DF (f) = i2fse
i�f=fssin(�f=fs); DC(f) = ifssin(�2f=fs)

The magnitudes of these responses are compared in Fig. 3(a). We can see that the central
difference departs significantly from the ideal response at higher frequencies. While the
forward difference amplitude response is moreaccurate, there is a phase error which can
be problematic; we therefore used central difference schemes in our experiments.
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Figure 3: Comparison of frequency responses of difference schemes

The signal processing literature has standard techniques for improving the perfor-
mance of derivative estimators, by the addition of more terms[5]. These generally aim
to optimise the frequency response over a fixed frequency range. In our case, we note
(from Fig 2) that:

� the required temporal frequency range can extend over the whole spectrum;

� in the spatial direction it can extend up to the anti-alias filter cutoff frequency�s=2vu
(and is therefore dependent on the unknown motion), and

� insofar as one can generalise, in typical images the spatial frequency content falls
off roughly as1=�.

We used a single design for temporal and spatial directions that optimises the fit of the
estimator at low frequencies. Specifically, for annth order estimator, the firstn deriva-
tives of the estimator frequency response are equated to those of the ideal response. The
coefficients for central difference estimators up to 3rd order are:
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The frequency responses are compared in Fig. 3(b), from which we can see that:

� on the one hand, all of these difference schemes will underestimate the derivative;

� on the other hand, the more severe the anti-alias filter, the smaller this error will be,
since the errors increase monotonically with frequency.

Note that we could have used the same design technique as was used for the spatial
low-pass filter in Section 2. However, this requires a different optimisation for each ver-
sion of the spatial filter cutoff frequency�s=2vc. Also as the cutoff frequency tends to
zero, the coefficients of this method tend towards those of our method.

4 Experiments

In Sections 2 and 3 we discussed two sources of error, from temporal aliasing and inad-
equate differentiator design, together with claims for their remedies. In this section we
show the results of some experiments to test these claims. For this we used a simple opti-
cal flow algorithm which we briefly describe.

Assume that some region of the imageh(x; t) is moving, under constant illumina-
tion, with uniform velocityv. Thus in the coordinates of the region,dh

dt = 0. Applying
the chain rule for partial differentiation, we can express this in terms of the image coordi-
nates:

v:rh+
@h

@t
= 0 (2)

In order to avoid the aperture problem[11], and to reduce the effect of noise, we solve
a set of such equations over a small patch of image pixels. This is then merely a stan-
dard linear regression problem of fitting the values of@h

@t to the vectorsrh, subject to
an unknown vector of proportionality�v. For simplicity, we use a least mean squared
regression fit. Thus if there areN pixels in the patch, and we denote by

�
@h
@t

�
and[rh]

the column vector andN�2 matrix formed by stacking the values over the patch of@h
@t

andrh respectively, the solution [1, 3] is given by:

v̂ =
�
[rh]T [rh]

�
�1

[rh]T
�
@h

@t

�
(3)

The matrix[rh]T [rh] was inverted using eigenvalue decomposition; when the matrix
was ill-conditioned, the eigenvalues were progressively adjusted to bias the result towards
zero motion.

4.1 Experimenting with a synthetic sequence

The image used was generated from a set of independently randomly-generated pixels,
uniformly distributed. This image is chosen as it has a known (flat) spectral content,
and contains a significant amount of high-frequency information: the effects of both the
anti-alias filter and the use of better derivative estimators show up more at higher spatio-
temporal frequencies. The motion was synthesised by shifting the image by 4 pixels per
frame in a horizontal direction. Noise with a uniform distribution of�5=256 of the image
pixel value range was added.
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We initially used a 1-D equi-ripple design[6], with a maximum pass-band ripple of
3dB and maximum stop-band ripple of -100dB, applied to the image successively inx-
andy- directions. The transition region width was equal to the pass-band width;i.e. for an
estimated maximum motion magnitude ofvu, the transition region extended from�s=4vu
to �s=2vu.

We compared the results of using (3) with the ground truth. The patch is square, with
N = (2vu+1)2 pixels (or 9 pixels when no filtering is used). We examine the mean
value, to reveal any bias in the method, and the standard deviation of the remaining error.
Table 1 shows the mean of the estimated velocity in the horizontal direction, together with

vu = none 2 4 6 8
estimator 1 10�2 [0.58] 0.9 [1.0] 3.0 [0.45] 3.5 [0.31] 3.6 [0.29]
order: 2 10�2 [0.59] 1.2 [1.3] 3.6 [0.33] 3.9 [0.21] 4.0 [0.32]

3 10�1 [0.59] 1.4 [1.5] 3.8 [0.26] 4.0 [0.23] 4.0 [0.32]

Table 1: Mean horizontal velocity estimatêvx and [s.d. of error]

the standard deviation of the error; the mean velocity estimate in the vertical direction was
always small (less than 0.1 pixel/frame), as might be expected. We interpret the trends in
the table as follows:

Estimator bias: For additive noise, under appropriate assumptions of statistical in-
dependence, we can show that (3) is a biased estimator forv; in particular,v̂ � v=(1 +
1=rsn), wherersn is the signal-to-noise power ratio. Thus if there are alias components
present that behave as random noise, we would expect the values ofv̂ to be progressively
biased towards zero as the filter cutoff frequency�s=2vu is increased beyond�s=2jvj.
This is certainly borne out in Table 1: the bias increases dramatically forvu < 4.

We also remember that the differential estimators underestimate the correct value,
particularly at higher frequencies. Forjvj > 1 this will affect the temporal derivatives
more than the spatial ones (Fig.1(b)). We might therefore expect from (3) that increasing
the differentiator estimator order should remove some of the bias; this is most noticeable
in the table atvu = 4. Decreasing the filter cutoff frequency should have a similar effect
(quite apart from aliasing considerations), as this will further remove the contribution of
the higher frequency parts of the differentiator estimator response. In the table, we can
see that there is still some significant improvement asvu increases beyond the ground
truth motion value of 4.

Standard deviation: We would also expect the standard deviation to decrease with
better filtering, reflecting a better signal-to-noise ratio. Table 1 in general bears this out.
The one exception is for the case of no filtering, where the standard deviation is less than
the case ofvu = 2. This is presumably because the severe bias ofv̂ towards zero will
scale the standard deviation similarly.

4.2 Comparison with other filters

We next compare the effect of using the low-pass filter suggested by Section 2.3 with that
of two other frequently-used filter types: a Gaussian filter, and a simple averaging filter.
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4.2.1 Gaussian filter

A 1-D Gaussian filter was applied in two orthogonal directions; the filter impulse re-
sponseg(x) is given by:

g(x) =
1p
2��

exp

�
� x2

2�2

�

A filter of order3� was used, with a raised-cosine window. Table 2 shows the effect of
varying the filter width parameter�.

� = 2 4 6 8 12 16
estimator 1 1.2 [1.3] 2.8 [0.67] 3.2 [0.39] 3.4 [0.28] 3.5 [0.20] 3.5 [0.16]
order: 2 1.5 [1.5] 3.3 [0.58] 3.7 [0.29] 3.8 [0.23] 3.9 [0.17] 3.9 [0.14]

3 1.6 [1.7] 3.6 [0.52] 3.9 [0.24] 4.0 [0.20] 4.0 [0.16] 4.0 [0.13]

Table 2: As Table 1, but using Gaussian filter

It appears that similar results are obtained using the Gaussian design. However, gen-
erous filter orders were used in both cases, so more experimentation with the filter order
is needed, particularly for real-time applications.

4.2.2 Averaging filter

We tried simple averaging filters with a range of widths from 2 to 16 pixels. None of
them gave a mean velocity estimate of more than 25% of the correct value.

4.3 Real image sequences

What of sequences of real images? The synthetic sequence used in the previous section
was chosen for its flat frequency response, since we were investigating Fourier domain
effects. Real images on the other hand tend to have spectra weighted towards lower fre-
quencies, so that some of the required filtering has in effect already been done. On the
other hand the spectra are of course also very variable, so that we cannot predicthow
muchfiltering needs to be done. Another difficulty with the use of real image sequences
is the lack of ground truth motion vectors. It is not sufficient to use a single image and ar-
tificially displace it: the effects of temporal camera aperture (footnote, Section 2.2) would
then be unrealistic. We therefore make only qualitative comparisons between the effects
of different filters.

The sequence used was from the “foreman” image sequence (Fig. 4). The motion
results from camera movement; thus it is locally uniform, which is appropriate for our
simple algorithm. The maximum motion component was estimated to be around 8 pixels
per frame. The algorithm was run using the three filter types, and with a 2nd-order dif-
ferencing scheme. The best results were obtained with the equi-ripple filter. The results
for vu = 0, 4, 8 and 12 are shown in Fig. 5; the arrows indicate the motion vectors, and
the circles the standard deviation of the regression fit over the patch. The symbols are
plotted every 10 pixels; the arrows are shown to scale. From these results we can see
that, provided thatvu > jvj, good measurements can be made. The results using cor-
responding Gaussian filters were similar, while those using simple averaging filters were
substantially worse.
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Figure 4: Sample image from sequence

5 Conclusions

From the above results we reach the following conclusions:

� A significant amount of motion can create temporal aliasing, which can affect the
accuracy of motion measurement (as is well known).

� This problem can be alleviated by spatial filtering. The filter width depends on the
maximum motion magnitude likely to be encountered. Although the specified filter
shape is expensive to realise, in practice simpler filters may be adequate.

� Further improvements to accuracy can also be made by using higher-order esti-
mates of the image intensity derivatives.

We can also conclude that hierarchical motion measurement schemes, in which the im-
ages are progressively subsampled, could also alleviate the aliasing problem, provided
that (a) there are enough levels in the hierarchy to ensure that the motion in the final sub-
sampled image is less than about 1 pixel per frame, and (b) the image is filtered appropri-
ately each time it is subsampled.
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