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Abstract

A new technique is presented for determining the positions where a range
sensor should be located to acquire the surfaces of a complex scene. The al-
gorithm consists of two stages. The first stage applies a voting scheme that
considers occlusion edges. Most of the surfaces of the scene are recovered
through views computed in that way. Then, the second stage fills up remain-
ing holes through a scheme based on visibility analysis. By leaving the more
expensive visibility computations at the end of the exploration process, effi-
ciency is increased.

1    Introduction

The automatic reconstruction of 3D objects (scenes in general) through range images is
gaining popularity in computer vision and robotics owing to the variety of applications
that can benefit from it, including world modeling [2], reverse engineering and object
segmentation [3] or recognition. Two basic tasks must be addressed in order to solve
that problem. First, an exploration process is necessary for determining the positions
where the range sensor must be placed so that all the surfaces of the objects in the scene
can be observed. Second, a multi-view integration process must combine the range im-
ages obtained from the different viewpoints to obtain a 3D model.

This paper focuses on the exploration task and presents a new technique for gener-
ating a small set of views necessary to reconstruct a complex scene. This issue is known
in the literature as the next-best-view problem. The majority of previous proposals (e.g.,
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[1][8][10][11]) tackle this problem by modeling the unseen areas/volume of the scene
being reconstructed and then computing the amount of unseen space that is visible from
each allowed position of the sensor. The latter is supposed to move over a surface (cyl-
inder or sphere) that is discretized for computational savings. A form of ray-tracing is
usually necessary in some of the stages of the process.

The next-best-view position is chosen among the different candidate positions by an
optimization process that maximizes the amount of unseen space observable from them.
A different approach also based on optimization is proposed in [12]. There, the uncer-
tainty of the superquadrics used to model the perceived objects is minimized, with the
camera position being a function of the parameters of the superquadrics.

Unfortunately, the aforementioned stages are computationally expensive: from the
modeling of unseen volumes in space, to the determination of visibility regions, or the
final optimization process. In spite of this computational effort though, no proposals
claim to reach an optimal solution capable of providing the minimum number of views,
but a suboptimal solution giving a “small” number of them.

Taking that into account, we propose a different strategy based on two stages. The
first stage avoids the costly computation of visibility regions and finds out the new point
of view as a result of a voting process that only considers the location of occlusion
edges. Occlusion edges have been shown to be useful for this problem ([7][9]). Experi-
mental results show that this stage is sufficient to acquire the majority of surfaces pres-
ent in the scene. Moreover, its outcome can be directly used to feed further algorithms,
such as object recognizers or gross motion planners. The second stage applies visibility
analysis to cover the holes left by the first stage due to self-occlusions among objects.
These holes tend to be relatively small and can be filled up with a few further views.

In order to gain efficiency during the exploration process, a simple 3D model in
which the different views are just appended is utilized, avoiding thus the costly integra-
tion of those views into a valid CAD model of the scene.

The proposed algorithm is described in Section 2. Section 3 presents experimental
results based on a 3D graphical simulator. Conclusions and future lines are given in
Section 4.

2    Next-Best-View Generation

Let us suppose a range sensor that is moving over a sphere (the observation sphere)
centered at the target scene and at a minimum distance away from it such that all objects
to be sensed are inside the sphere. For efficiency purposes, the observation sphere is
discretized into a number of cells such that the sensor can only be positioned at the cen-
ter of a cell. When a cell is visited, it is marked to prevent it from being chosen again.
The sensor’s position is identified by an orientation and an elevation angle relative to an
arbitrary observation frame located at the center of the sphere. The sensor is always
aiming at that center.

The first point of view is arbitrary (e.g., at the vertical of the observation sphere).
From it, successive points of view are generated until all surfaces are recovered. Each
iteration starts with a range image obtained from the current viewpoint and, based on it,
the algorithm decides where to look next. This is done through the following steps.
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2.1    Approximation of Range Images

For efficiency purposes, each range image is approximated by a triangular mesh upon
which further processing is applied. This can be done in various ways, including the
adaptive technique proposed in [4]. However, for conceptual simplicity, we select a set
of pixels uniformly distributed in a rectangular grid. Then, each pixel is transformed to a
3D point referred to a Cartesian frame associated with the sensor. The corresponding
transformation matrix is obtained from the sensor’s calibration process. Finally the 3D
points are triangulated by simply linking them along rows, columns and diagonals.

The resolution of the triangular mesh determines the minimum distance that can be
distinguished during the exploration process. Holes or separations smaller than the mesh
resolution will be discarded. The chosen resolution must be as low as possible in order
to speed-up the process. We are currently working with meshes of 90 by 90 points.

From the previous mesh, triangles whose barycenters project onto a background
pixel of the range image are discarded. Moreover, if � is the average perimeter of all the
triangles and � the standard deviation, those triangles with larger inclination (e.g., more
than 60 degrees) and a perimeter larger than �+k�  (with k = 1.2 in our implementation)
are also removed in considering that they are joining separate surfaces. This usually
happens when an object partially occludes another.

After this removal step, a set of separate triangulated regions is obtained, each corre-
sponding to different surfaces present in the scene. The edges of the triangles that de-
limit each region are labelled as exterior edges.

2.2    Determination of Occlusion Edges

Given a triangular mesh representing the current view, the objective now consists of
merging it with previous views in order to determine what exterior edges become occlu-
sion edges. In our context, an occlusion edge is the edge of a triangle that is susceptible
to occlude surfaces of the scene. Occlusion edges are an indicative of scene regions that
are pending to be explored, and will be used during the voting process (Section 2.4).

All triangular meshes obtained during the exploration process are stored in an explo-
ration model as they are acquired. This integration does not require the generation of a
valid CAD model or even a single triangular mesh though. This would be a time-
consuming task and can be done off-line right after the exploration phase. Hence, the
exploration model is just the concatenation of the different triangular meshes obtained
for each view.

When a new mesh is added to the exploration model, all its points must be trans-
formed from the sensor’s local frame to the observation frame. This can be easily done
as the position and orientation of the sensor are referred to that global frame as a result
of the sensor’s calibration. Then, the algorithm proceeds by determining what exterior
edges from both the previous views and the current one become overlapped with any of
the triangles of the exploration model. The exterior edges that are overlapped along their
whole extent become interior edges, while those which are not fully overlapped become
occlusion edges. According to that, occlusion edges are those edges that would delimit
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the boundaries of the regions in the exploration model if the latter was a real merging
(zippering) of the different views into a single triangular mesh.

The problem of finding occlusion edges then becomes the detection of overlap be-
tween an edge and a triangle. To speed-up the process, each exterior edge is not tested
against all the triangles of the exploration model, but against all the triangles that are in a
neighborhood of the exterior edge. Specifically, we are discarding the triangles whose
vertices are at a distance from the edge larger than 9 times the edge’s length.

The detection of overlap is done by dividing each exterior edge into a number of ex-
terior points (currently eight). Each point has associated the normal of the triangle to
which its exterior edge belongs. An exterior edge is considered to be overlapped when
all its exterior points are overlapped with any of the neighboring triangles.

In order to consider a triangle for overlap against an exterior point, that triangle must
be close enough to the point and the angle between the normals of both the triangle and
the exterior point must be lower than a certain threshold. In practice, we are considering
a maximum distance equal to the average length of the triangle’s edges and a threshold
angle of 90 degrees. If the previous conditions are satisfied, the point will be considered
to be overlapped with a triangle T if it is contained in the overlap polytopes of T.

A triangle T has two overlap polytopes. The upper overlap polytope of T is the vol-
ume defined by the plane that contains T and by the overlap planes associated with the
edges of T. The overlap plane associated with an edge E of T is the plane that contains E
and is orthogonal to the triangle adjacent to T along E. If T has no adjacent triangle
along E, or T and its neighbor along E are non-convex, the overlap plane coincides with
the plane orthogonal to T. Conversely, the lower overlap polytope of T is the symmetry
of the upper overlap polytope with respect to T. Further details can be found in [5].

As mentioned above, the exterior edges that do not have all their exterior points
overlapped with nearby triangles become occlusion edges. Each occlusion edge has as-
sociated the normal of the triangle that contains the edge, and a vector orthogonal to
both the edge and its normal, and pointing out of the surface. The latter vector will be
referred to as the occlusion edge’s tangent. The previous normal and tangent vectors
indicate directions in space where further exploration is likely to be worth it. In order to
determine predominant groups of directions, a voting process based on the use of ori-
entation histograms is utilized (Section 2.4). Orientation histograms are described next.

2.3    Spherical Discretization Maps (SDMs)

Orientation histograms are utilized to find clusters of both tangent and normal vectors
associated with each occlusion edge. Orientation histograms require a discretization of
the unitary sphere into uniform size cells. Each cell represents a set of orientations in
space (a solid angle). The simplest technique for discretizing a unitary sphere consists of
dividing it into parallels and meridians [1][6]. Unfortunately, the cells obtained in this
way do not have a uniform size. To have uniform cells, geodesic domes and tessellations
based on regular polyhedra have been proposed [6], but the problem then becomes the
efficient mapping of orientations to their corresponding cells.

We propose spherical discretization maps (SDMs) as simple representations that
allow a relatively uniform discretization of a unitary sphere with a simple way of map-
ping orientations to cells. The idea consists of dividing the sphere into a fixed number of
parallels P. Then each parallel is divided into a number of cells that is proportional to
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the area covered by that parallel, the latter being approximated by the length of circum-
ference of the parallel. The aim is that the equator has the maximum number of cells
while the poles have a single cell.

SDMs are defined by a predefined number (multiple of four) of cells along the
equator, CE. From it, P+1 parallels are defined, with P = CE/2. Given a certain parallel
p, its corresponding elevation angle is �(p) = � /2(4p/CE-1) .  From the latter, the
number of cells that belong to a parallel p is �(p) = 1 if cos(�(p)) = 0 (i.e., p is equal to 0
or P and corresponds to a pole) and �(p) = �CE cos(�(p) )�  otherwise. It is easy to
show that cos(�(p)) is the ratio between the length of circumference of the parallel at
elevation �(p) and the length of circumference of the equator. The orientation angle of a
given cell c that belongs to a parallel p is obtained as �(p,c) = 2�c/�(p).

Conversely, given an elevation angle �, -� /2	�	� /2, and an orientation angle �,
0	�	2� , the corresponding parallel p is obtained as p(�) = �(�+� /2)P/�� , whereas
the cell inside p is calculated as c(�,�) = ��(p(�) )� /2�� . According to that, the pole at
� = �/2 is mapped to parallel P, the equator at � = 0 to parallel P/2 and the pole at
� = -�/2 to parallel 0.

The resolution at which the sphere is discretized only depends on the number of cells
along the equator. In our implementation, all the SDMs are defined with 20 cells along
the equator. This leads to a discretization of the whole sphere into 11 parallels and a
total of 126 cells (see Fig. 1).

0

P

p

c

Figure 1. Example of a Spherical Discratization Map with 20 cells along the
equator, leading to 11 parallels and a total of 126 cells.

The proposed algorithm requires three SDMs: one for representing the visited cells
over the observation sphere and two more SDMs for the tangent and normal orientation
histograms used during the voting process. The latter is described next.

2.4    Normal and Tangent Voting

At this point, each occlusion edge has associated a normal and a tangent vector (Section
2.2). Then, two orientation histograms represented as SDMs (Section 2.3) are consid-
ered: one for normals (normal histogram) and another for tangents (tangent histogram).
Those histograms are the basis for a voting process that highlights predominant orienta-
tions of the occlusion edges.

Each tangent vector obtained above contributes with a vote in the tangent histogram
and each normal vector with another vote in the normal histogram. Besides keeping a
number of votes, every cell of the normal histogram also keeps the sum of the tangents
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associated with the normals that voted for that cell. Similarly, each tangent cell also
keeps the sum of the normals associated with the tangents that voted there.

After all occlusion edges have been considered and their corresponding normals and
tangents voted, the algorithm proceeds by looking for the cell that has received the
maximum number of votes in either histogram. If that cell was already chosen for a pre-
vious point of view, the cell is discarded and a new maximum cell is found. A third
SDM indicating visited cells over the observation sphere is kept.

At this point, two situations may arise corresponding to the two stages of the algo-
rithm mentioned earlier in the introduction: (a) a non-visited cell is found with a number
of votes above a certain significance threshold (24 votes in our implementation), or (b)
all cells with a significative number of votes are marked as visited and the remaining
cells have either no votes or a small number of votes below the significance threshold.
The second case usually corresponds to the situation where only holes left by self-
occlusion remain. Its associated processing is described in Section 2.5.

In the first case, the next view is computed as the result of the voting process as fol-
lows. If the maximum cell is found at the normal histogram, a distinctive set of occlusion
edges is likely to belong to a surface with similar orientation. For example, this is the
case of a hole in the middle of a planar or low curvature surface. In that situation, the
next point of view should tend to fill up the hole by aligning along the normal associated
with the winning cell. Conversely, if the maximum cell is found at the tangent histogram,
a distinctive set of occlusion segments are likely to belong to a surface with changing
orientation but similar tangents. This would be the case of a cylinder with one of its pla-
nar faces missing. In that case, the next point of view should tend to observe the missing
“lid” by aligning along the tangent vector associated with the winning cell.

However, as pointed out in [10], a certain amount of overlap must be enforced to fa-
cilitate the registration of the new view with previously acquired ones. In our case this is
done by utilizing the directions stored in the histogram cells to slightly modify the di-
rection corresponding to the winning cell. Specifically, the new point of view is com-
puted as the weighted average of unitary vectors such that the direction corresponding to
the winning cell receives a weight of 
 while the direction stored in that cell receives a
weight of 1-
. The value of 
 has been set to 0.7 experimentally.

2.5    Hole Filling

At this point, all the winning cells that have not yet been visited in both the tangent and
normal histogram have a number of votes below the significance threshold. This typi-
cally corresponds to a situation in which all major surfaces have been acquired and only
small holes due to self-occlusions are left.

The objective then becomes the determination of the next view that closes the largest
hole. This is done in three steps. First, the different holes present in the exploration
model are identified and the largest hole chosen as the target. Then, the surfaces from
the exploration model susceptible to block the given hole are identified. Finally, the non-
visited cell from where the target hole is visible at its largest extent is chosen as the next
point of view. These steps are described in further detail next.

2.5.1    Determination of the Largest Hole
Given the current exploration model and the set of identified occlusion edges, the ob-
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jective is to find out the group of occlusion edges that delimit the largest. This implies
the determination of all holes present in the model and from them the largest one.

In order to separate the different holes, a k-nearest neighbor classifier (with k = 2) is
applied to cluster the extremes of the occlusion edges contained in the exploration
model. This classifier starts by assigning each extreme to a different cluster. Then, an
iterative process finds out the k extremes closest to each extreme � and joins the clusters
corresponding to both � and its k neighbors into a single cluster. In this way, all the ex-
tremes are partitioned into a collection of clusters, with each cluster corresponding to a
hole or set of adjacent holes in the exploration model.

To prevent holes belonging to different parts of the scene from being incorrectly
joined, two extremes are excluded from being considered as neighbors by the classifier
if their distance is larger than a certain threshold  and the angle between their associated
normals is larger than 90 degrees. The normal of an extreme is the same normal vector
associated with the occlusion edge to which the extreme belongs (which, in turn, is the
normal of the triangle that contains that edge). The threshold � has been set to twice the
average length of all occlusion edges contained in the exploration model.

Once all holes have been determined, the one that is bounded by the largest number
of occlusion edges is selected as the target hole to be filled out. The target hole is repre-
sented by the set of extremes corresponding to its occlusion edges. The average of those
extremes is taken as the hole’s centroid, and the sum of the normals associated with
those extremes as the hole’s normal.

2.5.2    Culling of the Exploration Model
In order to speed-up the process that determines the cells from where the target hole is
visible, the exploration model is simplified in such a way that only the triangles suscep-
tible to block the hole are considered for ray casting computations. This is done by go-
ing over all the triangles contained in the exploration model and selecting those whose
normals have an angle lower than 90 degrees with respect to the hole’s normal and
whose vertex coordinates are above the hole’s centroid along the direction of the hole’s
normal. Those triangles constitute the culled model.

2.5.3    Visibility Analysis
The last step of the hole filling stage selects a non-visited cell on the observation sphere
from where the target hole is mostly visible, taking into account the possible overlaps
produced by the surfaces already acquired during the exploration process. These sur-
faces are the ones contained in the culled model.

Usually, there will be more than one cell from where the target hole is fully visible.
In that case it is necessary to chose one of them according to some optimality criterium.
This criterium has been defined as follows. Let the observation segment of a cell be the
3D segment that connects the center of the observation sphere with the center of that
cell. The optimality criterium consists of choosing, from all the cells from where the
target hole is visible at the same extent, the one whose observation segment has the
smallest angle (observation angle) with respect to the hole’s normal. This corresponds
to a cell from where the hole is observed with the lowest inclination and, thus, from
where its maximum area can be appreciated.

However, when there are surfaces above the hole, this criterium may lead to views in
which the hole is very close to one of the boundaries of those surfaces, and this usually
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produces vertical walls in the new acquired range image, which are removed after the
approximation stage described in Section 2.1. This removal usually produces a new hole
that will have to be targeted in further iterations. To prevent this behavior from happen-
ing, the target hole is dilated and the visibility analysis then applied to the dilated hole.
The dilation process consists of computing for every hole’s extreme a new point (dilated
point) along the line that connects that extreme to the hole’s centroid and at a distance
from the original extreme half the distance between the centroid and the extreme. The
dilation process is illustrated in Fig. 2.

Blocking
Surfaces

Original
Hole

Dilated
Hole

Figure 2. Example of the dilation of a hole and its effect on the selection of
the point of view.

C1 C2

C3

culled
blocking
surface

Figure 3. Visibility analysis. Cell C1 is the only one from where the hole is
entirely visible considering the blocking surfaces of the culled model.

The visibility process traverses all cells on the observation sphere (126 cells in our
implementation) discarding those which have already been visited or whose observation
angle is larger than 90 degrees. For each of the remaining cells, the one from where the
maximum number of dilated points is visible and whose observation angle is lowest is
chosen as the next best view to fill up the target hole. To check if a dilated point is visi-
ble, the straight line between the cell’s center and the dilated point does not have to in-
tersect any of the triangles contained in the culled model (see Fig. 3).

3    Experimental Results

The proposed algorithm has been tested with ranges images obtained from a simulation
tool developed for this project. This tool allows the set-up of 3D scenes with arbitrary
objects imported from CAD (VRML and Robmod) and from real range images. The
system allows the definition of camera positions over an observation sphere and the
computation of dense range images. The simulator also provides the necessary transfor-
mation matrices between the local coordinate frames attached to the camera and the
global observation frame.
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Figure 4. Partial sequence of the exploration of a scene containing three
spheres. The whole sequence consists of 20 views, from which the last 6
views correspond to the hole filling stage. The result after the voting stage is
shown at the third image in the right column.

Figure 5. Exploration of a teapot. (left) Exploration model after the first view.
(right) Exploration model at the end of the process in 31 views.

The first example corresponds to a simple scene containing three separate spheres.
Fig. 4 shows a partial sequence of the exploration models from the first view to the last
one. The whole sequence consists of 20 views. The CPU time to compute the 20 views
was 63 sec. on a SGI Indigo II with a 175MHz R10000. The 99% of this time was spent
by the occlusion edge detection process. The processing associated with the hole filling
stage greatly depends on the location of the holes and the blocking surfaces. In this ex-
ample, the maximum CPU time spent in that stage was 0.63 sec.

Fig. 5 shows the initial view and the result of the exploration of a teapot. 31 views
are necessary from which 26 correspond to the voting stage and the others to the hole
filling stage that closes 12 holes.

4    Conclusions and Future Lines

A two-stage technique has been presented for computing the positions where a range
sensor should be positioned in order to acquire the surfaces of a 3D scene. The first
stage determines the next view based on a voting scheme that takes into account the ori-
entation of occlusion edges. The second stage finds out holes left by the first stage and
applies visibility analysis to determine the views necessary to close them. Spherical dis-
cretization maps have been introduced as an efficient tool for implementing orientation
histograms. Immediate work will consist of the development of space partition strategies
necessary to accelerate the detection of occlusion edges. Future work will consist of the
introduction of constraints in the exploration process, such as unreachable viewpoints.
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