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Abstract

A technique for recognizing planar objects in three-dimensional space is de-
scribed. The object’s domain is not restricted to purely two-dimensional
items but includes fairly flat real objects such as a pair of scissors. To tackle
realistic matching problems, the proposed method is invariant to changes
within a prescribed range of perspective viewpoints, scaling, shift and rea-
sonable degree of occlusion. In brief, objects are recognized by a modified
dynamic link matching. Our experiments show that the system is very suc-
cessful in recognizing deformed objects due to perspective distortion, even
in rather cluttered scenes.

1 Introduction

The paper focuses on object matching – a high-level vision task which is an integral
component of a machine-vision system. To date, most neural-network-oriented or con-
ventional object matching systems are only invariant to affine transformation. In contrast,
this paper takes a more generalized approach for planar object matching which is invariant
to 3D perspective transformation and partial occlusion.

Dynamic link architecture (DLA), first proposed by von der Malsburg [2, 4] offers
a new variant of neural processing which combines the merits of deformable models
and self-organizing capability of neural networks. DLA involves two layers of rectan-
gular neuronal maps labeledI (representing image graph) andM (representing model
graph), as shown in Figure 1(a). Each neuron represents a local feature detector. There are
intra-layer connections which encode the geometric relations among neighboring neurons
within a layer, and inter-layer dynamic links connecting neurons on different layers. On
the basis of local feature similarity, the system rapidly modifies link weights in a Hebbian
fashion to establish neighborhood-preserving mappings which connect pairs of points
with similar local features. In brief, the system undergoes unsupervised self-organization
of links with the aid of appropriate intra- and inter-layer dynamics.

DLA has been applied very successfully in recognition of faces [2] and of partially
occluded objects in cluttered scenes [4]. However, it has yet to be applied in recognizing
objects in truly 3D scenarios. One crucial reason is that the appearances of local model
features vary dramatically under perspective transformations resulting in an enormous
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Intra-layer links

Inter-layer links

Model neuronal map

Image neuronal map

neurons
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a1
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Model neuronal m
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Image neuronal map

Image subgraph

Image subgraph
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Inter-layer links
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Intra-layer links

(b)

(c) (d)

Figure 1: a) Classical DLA. b) Modified DLA. c) Model neuronal map. d) Varying views
of model features.

search space. This work addresses the aforesaid problem using a self-organized hierar-
chical indexing system, so that a randomly-chosen test image feature only needs to be
compared with a relatively small number of model features. Moreover, classical DLA is
only tolerant to slight perspective distortions, e.g. small out-of-plane rotation. It cannot
handle the large degrees of perspective deformation we try to accommodate here. Hence,
several modifications to classical DLA are introduced to tackle this exceedingly difficult
recognition task, which has being largely ignored by machine-vision researchers.

2 Feature Extraction and Model Representation

Figure 1(b) shows the architecture of the modified DLA. The proposed model neuronal
mapM is not a rectangular grid of neurons as illustrated in Figure 1(c). Unlike classical
DLA (c.f. Figure 1(a)) where image and model neurons have all-to-all connections, an
image neuron is connected to a single model neuron. However, several image neurons
may terminate at the same model neuron. Furthermore, some image neurons connected
to dissimilar model neurons may coincide in the test image, e.g.a1 anda2 in Figure 1(b).
This unusual connectivity is chosen because adjacent model neurons may be mapped into
the same point under 3D perspective transformations.

Gabor filter responses are selected as the set of local features represented by each
neuron. The features are extracted by convolving the 2D imageI(~x) with a set of 2D
Gabor functions [2] given by:
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e 2

3e

1

(b) (c)

Figure 2: a) Tree-like indexing system. b) 5 clusters formed at a root node. c) Progressive
alignment of local features using simulated annealing and conjugate gradient minimiza-
tion.

 ~k(~x) =
~k2

�2
exp

 
�
~k2~x2

2�2

!�
exp

�
�i~k~x

�
� exp(

��2

2
)

�
; (1)

where~k = fw� cos(��); w� sin(��)g determines the center frequenciesw� and orien-
tations�� of the 2D Gabor filters. The system utilizes two different frequency levels,
i.e.w� = f0:27; 0:58g and 8 different orientations, i.e.�� = ��

8 , � 2 f0; : : : ; 7g. RadiiR
of the Gabor filters are 15 and 7 pixels for low and high frequencies respectively: the rel-
ative bandwidth is 2.0. Gabor wavelet representations are not useful for extract features
on homogeneous surfaces. Hence, Gabor filters are applied to both gray level images and
dilated edge maps as shown in Figure 1(d). The former is useful for highly-structured
surface markings. The edge map is dilated by passing a Gaussian filter over the edge pix-
els. The system adopts a multiscale strategy to provide scale invariant matching between
factors of 0.5 and 1.5.

3 Self-Organized Hierarchical Indexing System

A multi-view approach is used to provide 3D perspective invariant recognition. Gabor
filter responses are extracted for model neurons when the object is seen from 140 evenly-
spaced viewpoints (c.f. Figure 1(d)) between elevation angles of20Æ and90Æ. A self-
organized hierarchical indexing system (Figure 2) is created to group model features with
almost identical Gabor responses. Hence, an unknown test image feature need only be
compared with a few groups of closely-matching model features. For efficiency, only
the low frequency filter responses are stored. Furthermore, model neurons are classi-
fied underprimary or secondaryfeatures (c.f. Figure 1(c)). Primary features (shown as
black dots) include sample points along object boundaries and other prominent contours.
Secondary ones are evenly-spaced foreground sample points. Only primary features are
stored: secondary features play the auxiliary role of supporting local matching of primary
features.

Figure 2(a) shows the tree structure of our proposed indexing system. At each node,
sampled Gabor filter responses are grouped as follows: 1) discrete Karhunen-Lo´eve ex-
pansion [1] is applied to extract effective features among Gabor responses; 2) highly
correlated groups of these principal features are then generated based on unsupervised
clustering; 3) the Fisher transform [1] is used to enhance class separability. The unsu-
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pervised clustering is basically an iterativek-means approach where each feature~x is
attracted to the nearest cluster according to its normalized Mahalanobis distance:

D(Ĝ; ~�) =
1

2

�
d ln2� + lnj�j+ (Ĝ� ~�)T��1(Ĝ� ~�)

�
; (2)

whereĜ denotes the feature vector produced by Karhunen-Lo´eve expansion in step 1,
~� is the cluster centroid,d is the vector space dimensionality and� is the covariance
matrix, wherebyj�j and��1 denote its determinant and inverse respectively. The ini-
tial k centers for thek-means algorithm are derived using vector quantization based on
“neural-gas” networks [3]. 5 clusters or less are formed at each node in the tree, until
groups of approximately 200 Gabor filter responses are formed at the leaves. The deepest
tree encountered in our experiments has only 5 levels. Figure 2(b) shows 5 distinct clusters
created at the root of a tree used to represent model neuronal map shown in Figure 5(a).
When an unknown image Gabor response is presented, the test feature undergoes appro-
priate canonical space projections at each node as it traverses down the tree following
paths within 1.3 times the shortest Mahalanobis distance determined at each encountered
node. Two such indexing trees are created for Gabor responses of pixel intensity and
dilated edge map (c.f. section 2).

4 Local Feature Matching and Alignment

At the leaves, edge gradient and principal orientation of local pixel intensity (determined
by the axis of least second moment) are used to prune away model features unlikely to
match the given image feature. Differences of both attributes for a pair of comparable
model and test image features must be less than20Æ. On average, a given image feature
needs to match against less than 80 model features at the leaves. The similarity between
an image featurea 2 I and remaining model featuresb 2M are computed as:

S(Pba;~b;~a) =
~b � ~a

k~bkk~ak
min

 
k~bk

k~ak
;
k~ak

k~bk

!
; (3)

whereS(�) is the similarity function,~b and~a are Gabor filter responses of model and
test image features respectively,k � k denotes the magnitude of a vector, andPba denotes
the perspective transformation, i.e.~b is the Gabor filter responses of model sample pointb

when the object undergoes perspective transformation given byPba. All model and image
feature pairs which yield a value� 0:75 in equation (3) for Gabor filter responses of pixel
intensity or dilated edge map are deemed possible matches. This group of highly probable
feature correspondences is further processed using high frequency Gabor responses with
equation (3). In brief, high frequency Gabor filters are used to measure the local gray-
level similarity within narrow bands of foreground surrounding the dilated model and test
image edge contours.

Fine tuning of feature alignment is needed to provide acceptable pose estimation.
7 perspective parameters must be optimized:Pba = elevation angle(�ev), azimuth angle
(�az), horizontal shift(dx), vertical shift(dy), zoom factors, and view reference point
co-ordinates(vx; vy). The cost function is formulated as:
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C(Pba) =
1

N

X�
1� e��D(~x) jcos(4(~x))j

�
; (4)

whereD(~x) is the distance from a superimposed model edge point to the nearest image
edge point,4(~x) is the gradient difference between model and image edge points,� is
the smoothing factor andN is the number of model edge points. Gabor wavelet transfor-
mation is used here mainly because of insensitivity to small changes inPba. A two-stage
optimization process is used: 1) simulated annealing (SA) with downhill simplex mini-
mization is used to align feature correspondences quickly; 2) transformation parameters
produced by SA are then refined by conjugate gradient minimization. The 8 vertices on
the simplex are initialized to implied perspective transformations of the 8 most likely
matching feature correspondences. Hence, competition among hypothesized matches oc-
curs at this level. Partial derivatives of the translation parameters(dx; dy) are approxi-
mated by finite differences, whereas partial derivatives of the remaining parameters are
determined by the chain rule using partial derivatives ofdx anddy with respect to the
other transformation parameters.

Only edges surroundingL levels of projected model neurons in the test image are used
for feature alignment. Figure 2(c) shows this process forL = 5 levels of model neurons.
Both primary and secondary features are taken into account.

5 Dynamic Link Matching

A central matching unit based on the modified DLA draws evidences of local model and
test feature correspondences from supporting modules described in the preceding sections
to formulate a suitable match. The matching phase is divided into two: first, the neuronal
mapI is created; in the second stage, our modified dynamic link matching process is
applied to find the desired match.

5.1 Stage One: Creation of Image Neuronal Map

Edge pixels are activated in a square window denoted byW(~x) centered at a randomly
selected point~x in the test image. Matching counterparts are determined for activated
edge points using the indexing tree (which contains only primary features associated with
model edge points). Simulated annealing and conjugate gradient minimization (c.f. sec-
tion 4) are used to resolve the competition between conflicting hypotheses and to align
local features. New image neuronsa 2 I are created forL levels of model neurons used
in the alignment process. Hence, local subgraphs of feature correspondences are created
for both primary and secondary features after the alignment process. Ifg(a�) 2 M rep-
resents the model counterpart of image neurona� 2 I, then local similarity measures
Tba = fT 0

ba; T
00
bag are calculated for newly-created feature correspondencefb 2 M; a 2

Ig as follows:

T 0
ba = S(Pba;~b;~a)

T 00
ba = �T 0

ba + (1� �)hba; (5)
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32
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Existing image neurons 
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strong
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(a) (b)

Figure 3: a) Forbidden zones used to resolve conflicting feature correspondences. b) Im-
age neuronal maps generated in stage one.

hba =
1

2j�bj

X
b�2�b

max
a�2�a

g(a�)=b�

�
S(Pba;~b

�;~a�) + ~Xaa�

�
(6)

whereS(�) is given in equation (3),hba measures feature conformity within the neigh-
borhood ofb anda, �k is the set of neurons directly connected to neuronk via intra-layer
links, j�kj denotes the number of neurons in�k, ~Xaa� 2 [0; 1] denotes the difference
between ideal and actual displacements between image neuronsa anda�, and� (= 0.7
here) dictates the relative significance ofT 0

ba andhba. T 0
ba applies to the outermost level

L of model neurons used in the alignment process, whereasT 00
ba applies to model neurons

between levels0 andL� 1.
Numerous local subgraphs of feature correspondences are created with random ac-

tivation ofW(~x). A growth control mechanism based on competition and co-operation
among local match hypotheses (or subgraphs of image neurons) prevents proliferation
of spurious feature correspondences while promoting the merger of comparable image
subgraphs. Forbidden zones are defined whereby no two image neurons are allowed to
converge at the same model neuron. There are two types of forbidden zone: fixed and
floating. A256�256 test image is divided into 64 non-overlapping32�32 fixed forbidden
zones as in Figure 3. Floating forbidden zones are16�16 windows surrounding newly-
created image neurons where the uniqueness constraint also applies (one such is shown
in Figure 3). When� 2 image neurons converge at the same model neuron in these for-
bidden zones, only the one with highest Gabor response similarity given by equation (3)
is retained. Intra-layer links connected to the expunged image neurons are reconnected to
the selected image neurons (e.g. Figure 3).Tba is recalculated for affected feature corre-
spondences which have modified intra-layer connections using (5). The number of image
neurons will not exceed64� jMj, wherejMj is the number of model neurons.

Here, activation windowsW(~x) are of size32�32 andL = 3 levels of model neurons
are used in the local alignment. SmallerW(~x) allows discovery of more dissimilar match
hypotheses by minimizing the likelihood of selecting the same winning feature correspon-
dences repeatedly. LargerL will increase interaction between hypotheses so as to provide
more evidence (or feature correspondences) to warrant a plausible match eventually.

The resultant image neuronal mapI is a complex network of subgraphs created by
many independent hypothesized matches as shown in Figure 3(b). Most of these image
subgraphs are connected at some points because of the interactions among hypothesized
matches described above. However, we do not rule out the possibilities of disjoint image
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neuronal mapsI. Moreover, some of these disjoint maps may even be overlapping.

5.2 Stage Two: Modified DLA

Inter-layer dynamic linksJba 2 [0; 1] are established for pairs of potentially matching
model neuronb and image neurona according to:

Jba =
T 00
baP

a0 T
00
ba0
; (7)

wherea0 are image neurons connected tob. An image blob denoted byB(~xc) is randomly
activated as part of the system dynamics. Unlike classical DLA, image blobs used here
are simply square windows centered at randomly selected test image point~xc. We cannot
use the same image blob definition as in conventional DLA for two reasons: 1) the image
neuronal map is not a rectangular grid; 2) there may be overlaps among image subgraphs
as shown in Figure 4.

Effective input value to model neuronb is given by:

I (b) = max
a2B(~xc)

(JbaT
00
ba); (8)

Only I (b) > 0:52 are considered as probable matches. Model graph blobB (bc) is
activated according to the minimum potential value given by:

V (bc) = �
X

b2B(bc)

I(b); (9)

LetCbc be the set of feature correspondences between image neurons inB(~xc) and model
neurons inB(bc) that contributed to the activation values ofB(bc) according to equa-
tion (8). Image neurons associated with feature correspondences used to calculateT 00

ba for
feature correspondences inCbc are shifted. The shift for one such image neuron, saya�,
is given by:

~xa� = ~xa� + �S(Pba; ~b�; ~a�)(~xa� � ~x
I
a�); (10)

where~xa� denotes the position of image neurona� andb� is the matching counterpart
of a�, (~xa� � ~xIa�) is the displacement between the current position ofa� and the ideal
position ofa� (denoted by~xIa�) and� is the update rate. A value of 0.2 is used throughout
our experiments.Tba of all adjacent image neurons with intra-layer links to shifted image
neurons is recalculated with equation (5).

Let �bc denote the set of feature correspondences whose image neurons have intra-
layer connections with image neurons inCbc . ThenJba is updated by:

Jba =
Jba + "JbaTbaP

a0 (Jba0 + "Jba0Tba0)
8fb;ag 2 Cbc ;�bc (11)

where the update rate" is equated to 0.025 here. Disjoint image neuron subgraphs asso-
ciated with different hypotheses (i.e. dissimilar perspective transformations) may occupy
the same spatial region in the test image as shown in Figure 4. To resolve ambiguities
caused by overlapping image neuron subgraphs, we deliberately weaken some dynamic
links within the activated blobs. Links connected to image neurons not found inCbc or
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Figure 4: a) Competition between two overlapping hypotheses. b) Average displacements
of model neurons per 10 iterations during dynamic link matching

�bc but encompassed by triangles (grayed areas) formed by connecting 3 image neurons
with intra-layer links to each other (inCbc or�bc) are weakened by:

Jba = Jba � 
 exp

�
�

(~xa � �x)2

5x2m

�
; (12)

where~xk is the position of image neuronk, �x is the centroid of the overlap between image
and model blobs, andxm is the maximum distance from�x among image neurons inCbc
and�bc . A factor of
 = 0:01 is used in our experiments.

Initially, image blobsB(~xc) at 1
5 the test image size are used, so that more proba-

ble hypothesized matches can be found rapidly. Blobs gradually shrink with increasing
iterations as dynamic links mature.

6 Experimental Results

This section describes some experiments which demonstrate the capabilities of the de-
scribed paradigm, namely invariance to perspective transformations and robustness to
noise and partial occlusion. Stage 1 is allowed to run for 800 iterations; Stage 2 termi-
nates after 500 iterations or when> 30% of the model features are locked onto test image
sample points for 70 consecutive iterations. Resultant matches are illustrated by superim-
posing model neurons onto the positions of image feature points which give the maximum
activation values. Missing model features (possibly resulting from partial occlusion) with
low input values (� 0:52) are not shown.

The range of objects used in testing varies from 2D planar items to flat real objects.
Many test images are cluttered with irrelevant features which obscure straightforward
detection of useful feature In spite of this, the proposed system produces fairly accurate
matches as shown in Figure 5.

The proposed system should not produce large networks of connected image neurons
when a given target isnotpresent in the test image. Figures 6(a) and (b) show the resultant
matches when the system tried to locate the model in Figure 5(a) in the given test images.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

(s) (t) (u) (v) (w) (x)

Figure 5: (a, d, g, j, m, p, s, v): model neuronal maps. (b, e, h, k, n, q, t, w): test images.
(c, f, i, l, o, r, u, x): resultant matches.

(a) (b) (c) (d) (e) (f)

Figure 6: (a, b, c) Small model graphs generated by proposed system when the target
is not present in the test images. (d, e, f) Applying the proposed system to recognize
multiple occurrences of a target.
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Likewise, a poor match is obtained when the model in Figure 5(m) is applied to the test
image shown in Figure 6(c). We have also applied the algorithm to images containing
more than one instance of a given target, e.g. Figure 6(d). Figures 6(e) and (f) show
the largest and second largest image subgraphs produced respectively, demonstrating the
potential to recognize multiple occurrences of identical objects in test images.

Figure 4(b) shows the average displacement of model neurons due to shifting or re-
assignment of their most likely matching counterparts in the test image during dynamic
link matching. Average displacements plotted in the graphs are normalized to between
the smallest and largest displacements measured for each experiment. 50 measurements
are taken at 10 iterations apart. Most of the experiments show rather erratic changes in av-
erage displacements throughout matching process. However, many of them show gradual
decrease in average displacement (or downward trend) with increasing iterations.

7 Concluding Remarks and Future Work

A neural technique for recognizing flat objects is described. The merits of this approach
over most conventional neural-network based recognition systems include: invariance
against perspective distortion, good tolerance against partial occlusion and poor image
segmentation. The next phase of work focuses on extending this approach to recognize
3D artificial objects by detecting one or more of their planar surfaces. We also intend
to adapt the current implementation to match multiple occurrences of identical objects in
test images.
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