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Abstract

Kalman’s optimum linear filter has proved to be immensely popular in
the field of computer vision. A less often quoted contribution of Kalman’s
to the control theory literature is that of the concepts ofcontrollability and
observabilitywhich may be used to analyse the state transition and obser-
vation equations and give insights into the filter’s viability. This paper aims
to highlight the usefulness of these two ideas during the design stage of the
filter and, as well as presenting the standard solutions for linear systems, uses
a practical vision application (that of tracking plants for an autonomous crop
protection vehicle) to illustrate a useful special case where these methods
may be applied to a non-linear system. The application of tests for con-
trollability and observability to the practical non-linear system give not only
confirmation that the filter will be able to produce stable estimates, but also
gives a lower bound on the number of features required from each image for
it to do so.

1 Introduction

The Kalman filter [1] has proved to be an immensely popular tool in computer vision,
particularly in the field of tracking, e.g. [3, 5, 2], and also in parameter estimation [13]
and stereo matching [7]. By contrast, another two issues raised by Kalman,controllability
andobservability, are seldom seen in the machine vision literature, with the exception of
[12], who has shown their value as a design aid for linear time-invariant filters.

This paper gives the definitions of the two concepts, along with the standard tech-
niques for testing whether linear systems are controllable and observable, and the im-
plications of uncontrollability or unobservability are discussed. In general, there is no
equivalent test for controllability and observability for non-linear systems, but a useful
exception for machine vision algorithms is illustrated here with reference to a real appli-
cation; that of controlling an autonomous crop protection vehicle. The class of non-linear
problems where the exception applies are those where several observations are compared
to a single prior state prediction, for example when a group of features extracted from an
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image are evaluated with respect to a prediction of the group’s position in the image. The
tests not only provide confirmation that, if it is initialised correctly, the extended Kalman
filter will (given good numeric conditioning) yield stable state estimates, but they also
give a lower bound on the number of observed features required from each image of a
sequence.

2 Controllability and observability in linear systems

The definitions and results given here for controllability and observability of linear sys-
tems may be found in any standard textbook, e.g. [4, 6]. In the explanations given below,
the discrete time invariant linear systems are given by

x(k + 1) = Ax(k) +Bu(k) (1)

z(k) =Hx(k) (2)

wherex(k) is the system state at time stepk, u(k) the control input,z(k) is the ob-
servation vector,A is the state evolution matrix,B the control gain matrix, andH the
observation matrix. In the time variant case,A;B andH are matrix functions of time.
The tests given below are also applicable to continuous time systems.

2.1 Controllability

A system is said to becontrollable if every state vectorx(k) can be transformed to a
desired state in finite time by the application of unconstrained control inputsu(k). Evi-
dently then, anuncontrollable system is one where some elements of the state vectorx(k)
cannot be affected by the control input.

The test for controllability of a time-invariant system is given by:

A system with state vector x of dimension n, is controllable if the controllability
matrix

C = [B;AB; : : : ;AiB; : : : ;An�1B] (3)

has column rank n (i.e. n linearly independent columns).

The proof of this statement is based on successive substitutions of (1) to find a solution
for x(N) in terms of an original statex(0) and a series of control inputsu(0) : : :u(N �
1). For a time-varying system, where thestate transition matrix�(k0; k1) describes the
cumulative change ofA(k) in the intervalk0 + 1 � k1, the controllability is defined by
the rank of the matrix�(k0; k + 1)A(k). Proofs for both cases may be found in [4].

2.2 Observability

A system is said to beobservableat a time stepk0 if for a statex(k0) at that time, there
is a finitek1 > k0 such that knowledge of the outputsz from k0 to k1 are sufficient to
determine statek0. Following this, anunobservable system is one where the values of
some elements in the state vector at timek0 may not be determined from examination of
the system output regardless of the number of observations taken. That observability is
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specified over an interval highlights that whilst a single observation of the system at time
k may not be enough to obtain the complete state, additional observations may allow the
full state information to be accumulated. Evidently, for time invariant systems, the time
k0 is unimportant.

For linear time invariant systems, the test for observability is given by:

A system with state vector x of dimension n is observable if the observability
matrix

O =

2
666666664

H

HA
...

HAi

...
HAn�1

3
777777775

(4)

has row rank n (i.e. n linearly independent rows)

The proof of this test [4] uses (1) and (2) to determine the value ofz(k) for 0 � k �
n � 1 in terms ofx(0) and the known control inputsu(k) during that time period. It is
then straightforward to show thatx(0) can be completely determined (and is therefore
observable) if the matrixO has full row rank. A test for observability between time steps
k0 andk1 for linear time varying systems may be found in [4] (and relates to the rank of
the matrixH(k)�(k; k0)).

3 Implications for Kalman filtering

The above tests for controllability may be applied to stochastic systems which provide the
Kalman filter prediction and observation equations:

x(k + 1) = Ax(k) +Bu(k) +Vv(k) (5)

z(k) = Hx(k) +w(k): (6)

In (5) the matrixV describes the gains applied to the vector of independent, identically
distributed unit variance Gaussian noise sourcesv which stipulate how noise affects the
state evolution. The noise terms may simply be treated as another control input, and
the controllability test desribed above may be applied, using matrixV in place ofB; the
result indicates the ability of the noise to affect the state. The additive zero-mean Gaussian
noise termw in (6) clearly does not affect the measure of observability, which is solely
dependent onH andA.

From (5) and (6) the Kalman filter prediction equations may be written; these will
be used to illustrate the implications of controllability and observability in Kalman filter
performance.

x̂(k + 1jk) = Ax̂(kjk) +Bu(k) (7)

P(k + 1jk) = AP(kjk)AT +Q: (8)

ẑ(k + 1jk) = Hx̂(k + 1jk): (9)
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The termx̂ is the filter state estimate, andP the filter estimate of the state covariance.
Q is the covariance matrix of the system noise, i.e.VTV. The notationkjk indicates
the quantity’s value at time stepk, givenk observations, andk + 1jk indicates the value
of the variable predicted for time stepk + 1 givenk observations. The quantitŷz is the
predicted observation, i.e. the position of the predicted state in observation space.

The action of the Kalman filter is to improve the predictionx̂(k + 1jk) by blending
the predicted observation̂z(k+1jk) with the real observationz(k+1) in such a way that
the total mean square error on the estimate (the trace of the matrixP) is minimised.

3.1 Controllability

If the pairA andB form an uncontrollable system, this has no implications for the Kalman
filter other than that the control inputsu will not affect every element of the state estimate
x̂ during the prediction step. This will not affect tracking performance unless, of course,
this reveals a flaw in the modelling of the system dynamics. However, if the system
formed byA andV is uncontrollable (and there is no coupling between the states via the
matrix B), this means that the Gaussian noise sources inv do not affect all of elements
of the state, i.e. they are uncorrupted by the noise. The diagonal elements ofP corre-
sponding to these “uncorruptible” states will be driven to zero by the Kalman filter (which
minimises the trace ofP), and once this has happened, the estimates of these states are
fixed; no further observations will alter their values.

Although such an approach may at first seem a little curious, there is sometimes good
reason to allow the variance of an estimate to collapse to zero. In [8] the mean of a process
is estimated; clearly a mean is a single, fixed quantity which does not vary with time. If
the estimation process allows accurate evaluation of the mean it is quite correct to use the
process covariance to constrain the value of the estimated mean by allowing the estimate
variance to reduce to zero (the issue of controllability of this system is discussed in depth
in the later work [12]). In [11], where the covariance matrix is used to provide partial
constraints on aligning patches of range data, it is noted that in certain degenerate cases
there are problems with their algorithm, although this is not named as a controllability
problem.

Inspection of (8), which governs the evolution of the state covarianceP, will confirm
that certain diagonal elements cannot increase if theA,V pair are uncontrollable. The first
term in the equation,AP(kjk)AT describes the process of noise transfer between states
during state evolution – by definition, in an uncontrollable system noise cannot transfer
into any uncontrollable state via this mechanism, therefore it cannot be responsible for
any increase in the variance of uncontrollable states. The second term in (8) is the covari-
anceQ (= VTV) which represents the direct noise input; evidently in an uncontrollable
system this contribution toP must be zero for any uncontrollable states (this follows from
the form ofV, which musthave zero elements in the row corresponding to the uncon-
trollable state; otherwise noise is being directly input to that state at each iteration). If
the diagonal elements ofP corresponding to uncontrollable states cannot increase, the
Kalman filter will drive these elements to zero, after which point new observations will
not alter the estimate of any uncontrollable states.
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3.2 Observability

Whilst uncontrollable systems are sometimes desirable for Kalman filtering, a Kalman
filter built around a system with unobservable states will simply not work. By definition,
an unobservable state is one about which no information may be obtained through the
observation equations; in the absence of information, the filter estimate for that state will
not converge on a meaningful solution.

4 Non-linear systems – a practical application

Non-linear systems are those where the state transition and/or observations of a system
are functions of the state of the system:

x(k + 1) = a(x(k);v(k); k) (10)

z(k) = h(x(k);w(k); k) (11)

wherea is the state evolution function andh the observation function. Both functions
here are stochastic, with random noisesv andw in the state and observation equations
respectively. There is no rule for determining the controllability and observability of
a general non-linear system; so no prior judgements may be made about the extended
Kalman filter’s viability. Despite this lack of a general test of controllability/observability
for non-linear systems, it is possible to show that the test for observability may be adapted
for a certain class of non-linear systems which can be particularly useful for vision appli-
cations.

4.1 A practical example

The practical application used to illustrate the techniques discussed above is that of steer-
ing an autonomous agricultural vehicle across a field of crop (such as cauliflower or sugar
beet), whilst simultaneously picking out the individual plant positions. The extended
Kalman filter described below is based upon that in [9], but has been altered to address
some of the problems highlighted in that work. The system model is illustrated and the
controllability and observability of the system is discussed.

4.2 The system model

Figure 1 shows a schematic view of a patch of crop, with the plants being represented by
black circles. There are two sets of axes in the figure,(xw; yw) and(xc; yc; zc) which
represent the world and camera co-ordinate systems respectively, with the worldzw axis
projecting out of the page, and camera axiszc projecting into the page. It can be seen that
the worldy axis is coincident with the middle plant row. The model of the crop consists
of the two measurements;r, the spacing between the rows andl the space between plants
in the row.

Three parameters (tx; Y and	), specify the position of the model relative to the cam-
era as shown in the diagram. The measurementY is the offset in world co-ordinates from
the world origin of the plant in the central row at the bottom of the image. The offset of
the camerayc axis from the world origin is given bytx. It can be seen then that thetx and
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Figure 1: The crop planting model

	 parameters may be used to provide navigation information in terms of a heading angle
and offset of the camera (and hence the vehicle) relative to the rows, and the parameterY

can yield the position of individual plants via (12) and (13) below.

xw = nr (12)

yw = ml + Y (13)

The quantitiesn 2 f�1; 0; 1g andm 2 f0;�1;�2; : : : ;�(mmax � 1)g index into the
3�mmax grid formed by the planting pattern. It should be noted that the plant centres are
assumed to be on the ground plane (zw = 0). It is stressed that the model describes the
grid on which individual plants should lie, rather than the actual location of the individual
plants.

In [9], the quantities estimated by the Kalman filter aretx, Y and	, whilst the model
parametersr and l are assumed fixed (the imperfect plant positioning being somewhat
inappropriately modelled as observation noise). To rectify this situation, and allow for the
fact thatr andl are imperfect, the Kalman filter also estimates the mean values�r and�l
of r andl respectively for the plants currently in view. The implications of this will be
discussed further below.

4.3 System dynamics and controllability

With the state vectorx = [tx; Y;	; �r; �l]
T , the system dynamics are described by

x(k + 1) = I5x(k) + I5

2
66664

Utx

UY

U	

0
0

3
77775+Vv(k) (14)
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whereI5 is the5� 5 identity matrix and the subscriptedU values control inputs relating
the vehicle’s motion between image acquisitions. It should be noted that, except for noise,
the mean plant spacings�r and�l are assumed constant. The noise gain matrix is diagonal,
such that

VT (k)V(k) = Q(k) =

2
66664

�2tx(k) 0 0 0 0
0 �2Y (k) 0 0 0
0 0 �2

	
(k) 0 0

0 0 0 �2
�r (k) 0

0 0 0 0 �2�l (k)

3
77775 (15)

The�2 terms relate to the mean-square error introduced at each prediction step. Fortx,
Y and	 they are provided by the vehicle control Kalman filter, but for�r and�l the�2

terms are non-zeroonly when a new row of plants come into view. The reason for this
is that plant noiseQ should be added only when new information is available, and for
the estimated mean values of the plant spacing parameters, new information is introduced
whenever a new row of plants appears in the image. By inspection ofQ(k) with �2�r
and�2�l zero (i.e. when no new plants have come into view) it can be seen that theAV

pair (A = I5 andV =
p
Q(k) = diag(�tx ; �Y ; �	; ��r; ��l)) is uncontrollable, so the

estimated covariance on the estimates of both�r and�l will start to converge to zero. This
is quite acceptable, however, because during the period where no new plants come into
view, the filter is refining its estimate of the plant spacing using several views of the same
patch of crop. When the new plants are seen, process noiseis added which reflects the fact
that the mean spacing parameters may well be different for the patch of crop containing
these new plants.

Figure 2 shows the estimate of�r over a set of 20 images for the uncontrollable system
described above (figure 2, right) and a fully controllable system where noise is added to
�r with each new image (figure 2, left). As can be seen, the estimate from the controllable
system is not as smooth as that from the uncontrollable one, and the variance of the esti-
mate does not shrink over the sequence. Both of these behaviours are to be expected when
new plant noise is injected for each image. The uncontrollable system has a smoother es-
timate, and it can be seen that the variance of this estimate converges as the same set of
plants is seen over several images. The increase in estimate variance at image numbers 4
and 12 correspond to the appearance of new plants in the image. Similar behaviour has
been observed for the estimate of�l.

4.4 Observability in a non-linear system

The system described above is observed as plant centres in a perspective image [9]. This
perspective projection leads (by using (12) and (13) with the imaging model of Tsai [10])
to the following non-linear observation system:

z(k;m; n) = h[k;x(k);m; n;w(k)] =

�
xf (x(k);m; n)
yf (x(k);m; n)

�
+w(k) (16)

where(xf ; yf ) is the image position in pixels of a plant centre on the ground plane:

xf (x; Y;	; �r; �l;m; n) =
f

dx

n�r +	(m�l + Y ) + tx

n�r	sin�� (m�l + Y ) sin�+ tz
+ Cx (17)
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Figure 2: A comparison of state estimates and variances from a controllable and uncon-
trollable system. The middle trace shows the state estimate, the upper and lower traces
showing the estimate�2 standard deviations. Left: controllable system output. Right:
uncontrollable system output.

yf (x; Y;	; �r; �l;m; n) =
f

dy

(m�l + Y �	n�r) cos�

n�r	sin�� (m�l + Y ) sin�+ tz
+ Cy (18)

Cx andCy are the co-ordinates of the camera’s optic centre on the CCD in pixels,f the
focal length of the camera, anddx anddy the side-lengths of the pixels.

The observability criteria expressed in (4) does not apply to the system described in
(16). However, it can be shown by substituting the Taylor series forh[k;x(k);w(k)] into
(16) and truncating second order and higher terms, that a test similar to that of (4) may be
derived, with the Jacobian ofh[k;x(k);m; n] evaluated atx = x̂(k +1jk), replacing the
observation matrixH. In this example,hx (after taking out common factors on each row,
which is acceptable for rank analysis) is given by :

hx =

�
1 	 m�l + Y � n�r n(1� Y ) m	
0 1 �n�r �n	 m

�
(19)

On inspection of (14), it can be seen that the matrixA of (7) is simply the identity matrix.
Therefore, the rank of the observability matrix (4) is the same as the rank ofhx in (19).

For a system to be observable, its row rank must be equal to the dimension of the state
vectorx, in this case 5. As can be seen in (19),hx has only two rows (although they are
independent), so at first glance it would appear that the system is unobservable, and the
extended Kalman filter cannot work. However, in this application, where there is one state
prediction (prior) for a set of many features, it is possible to incorporate all the measure-
ments in parallel, as in [9], where the features observed in each image are incorporated
simultaneously in batches. As part of this batch update process a stacked observation
matrix is formed by stacking the matrix of (19) associated with each individual feature
extracted from the image into a single matrix,hxstack, with 2s rows for observations of
s features, where each feature has its own unique pair of valuesm;n.

The observability of the system may now be assessed by performing a rank analysis
on the stacked matrixhxstack (in cases whereA is not the identity matrix,A andhxstack
should be substituted into (4)). Inspection of the second row of (19) shows that regardless
of the values of the state variables (tx; Y;	; �r; �l), i.e. whatever the point of linearisation
of (16), the stacked matrixhxstack will have one independent row for each different



172 British Machine Vision Conference

value ofm found in the feature set. For the first row of (19) to be unique for different
features (values ofm andn) places some constraints on the state variables; however, a
little thought shows that sufficient conditions are that�r 6= 0 and�l 6= 0, which stipulates
that the crop must lie on a two dimensional grid (i.e. that the model of figure 1 is valid).
In short, provided a sufficient number of observations (see below) are available,hxstack
will be of full row rank and the linearised system will be observable.

To generate the required minimum of 5 independent rows, only 3 features are required
(which will give anhxstack matrix with 6 rows), providing that all three do not share the
same value ofm or n, or in other words, providing that the three features do not all lie
within a single row or column of the grid structure. This result confirms that provided
by common sense; one feature can partially locate the grid (givingtx andY ), a second
feature determines the orientation	 and grid parameter�r (or�l), and a third measurement,
provided that it does not lie on the same row (or column) will provide the second grid
parameter�l (or �r).

5 Conclusions

The control theoretic concepts of controllability and observability have been introduced
and their implications for Kalman filter design underlined. Despite the lack of a general
test for the controllability and observability of non-linear systems, it has been shown that
for a non-linear problem where several observations are evaluated with respect to a single
prior (here the task of determining ego-motion from perspective views) itis possible to
test for the observability of the system, and that this test provides a lower bound on the
number of observations required for the system to function.
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