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Abstract

Scale and orientation steerable 2D filters are constructed using a frame of Er-
lang functions in the Fourier domain. Erlang forms for the radial frequency
characteristic are shown to provide complex quadrature filters which can be
steered in a scale parameter,�. Oriented, spatial domain filters are con-
structed by imposing an appropriate angular selectivity in the frequency do-
main. A filter bank is designed, and outputs of the filters of the bank are
steered to construct an oriented scale-space decomposition of an image sub-
band. Some applications are discussed.

1 Introduction

The use of sub-band methods in image analysis is perhaps not as widespread as for coding.
Nevertheless, quite successful and powerful analysis algorithms have been demonstrated
[1]. One can make good use of sub-band processing when image features exist at several
scales, so that operators of different sizes must be employed: a key issue then becomes
the design of these operators. This paper, in a manner similar to recent approaches of
generating linear scale spaces, shall focus on scale-steering of operators atonesampling
rate. This has the advantage of simplifying the registration of information across multi-
ple scales, although the computational costs and the size of a complete representation are
larger. It is well known that the use of multi-scale decompositions can yield full frequency
domain coverage by the Mallat [6] algorithm. However, the processing of information at
intermediate levels of scale is not straightforward from the coefficient space. It is, in fact,
imperative that one makes the distinction between a pyramidal decomposition used for
compact representation, from that used as a vision front-end. The requirement for feature
extraction can often be aided by embedding the image in a space (see, for example, [5])
more appropriate to the extraction of useful features.

The ability to steer the orientation of an operator from a number of fixed filters has
been successfully demonstrated by a number of authors [2],[4], and is thought to be a
function performed by parts of the human visual system [8]. By a suitable choice of
radial Fourier domain filter specification, one can also steer effectively inscale, but this
requires certain coverage and smoothness properties of the ”basis”, or, more correctly,
”frame” filters. In what follows, a scale and orientation steerable scheme is developed
based on Erlang functions.
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2 The Erlang functions

The Erlang functions are one-sided density functions which are well known in statistics
[7]. In these respects, they are like the lognormal functions. The family of Erlang func-
tions can be represented by

fn(x) = Ane
��xxnU(x); n = 0; 1; 2::: (1)

where� is some positive constant, fixed over all families, andU(x) is the generalised
Heaviside function.An is a constant for eachn, generally chosen to ensure that each
fn(x) is a density function in the statistical sense:Z 1

0

fn(x)dx = 1; n = 0; 1; 2::: (2)

2.1 Properties in the frequency domain

Filters with Erlang frequency characteristics have some properties which make them at-
tractive for analytic purposes and as practical tools for signal and image processing. In
two dimensions, the form

Hn(!) = An!
ne��!U(!); n = 0; 1; 2::: (3)

for radial frequency variation will be used.

2.1.1 Central Frequency

The radial frequency location of the peak of each family is a linear function ofn. To see
this, take the derivative ofHn(!):

@

@!
fHn(!)g = Ane

��!
�
n�n!n�1 � �n+1!n

	
n = 0; 1; 2:: (4)

At the peak location for each member of the family in frequency, the derivative is zero.
This leads to

!max = n=�; n = 0; 1; 2; 3::: (5)

Thus, the peak frequency of each family member increases linearly with the order of the
family. Equivalently, for a fixedn, the modal frequency of the filters is proportional to
1=�.

2.1.2 ! Coverage and Filter Synthesis

If a family of filters is constructed forn = 0; 1; 2::, it can be shown that these filters cover
all frequency space, and also thatanyother arbitrary filter magnitude specification which
can be expressed as a finite polynomial in! can be synthesized by a weighted combi-
nation of the frame filters,Hn(!). Consider theN th order polynomial filter magnitude
specification,G(!). It is proposed that one can always find a set ofbn such that

1X
n=0

bnHn(!) = G(!) (6)
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Expanding the left hand side of this equation yields

1X
n=0

bnAn!
ne��! = e��!

�
b0A0 + b1A1! + b2A2!

2 + :::
	

(7)

so that

b0A0 + b1A1! + b2A2!
2 + ::: = e�!G(!)

= G(!)

�
1 + �! +

�2!2

2!
+ :::

�
(8)

BecauseG(!) is by assumption a finite order polynomial, the effect of a multiplication
with the infinite order expansion ofe�! simply changes the weights of each power of!.
The case above also immediately gives us an answer to the coverage provided by the
infinite frame,Hn(!). If a flat response across all! is required, then settingG(!) = c
in Equation (8), wherec is a real constant, and equating powers of!, shows that one
can obtain complete, uniform coverage over all frequencies if the sub-bands are weighted
such that

bnAn =
�nc

n!
; n = 0; 1; 2; ::: (9)

In fact, the normalising weights applied to make the Erlang functions density functions
are given by Equation (2) as

An =
�n+1

n!
(10)

so thatbn = �c; n = 0; 1; 2::: is all that is required.

The properties outlined above hold for an infinite number of frame functions; it is fair
to ask what happens when only a finite subset of the family is available. In this case,
the approximation is close to the desired responseG(!) in the sense of anN th order
polynomial, ifN consecutive frame members are used. Since the range of! over which
the approximation is required to hold is generally finite, the synthesis properties of these
filters is quite good.

2.2 Spatial Domain Properties

2.2.1 1-D Properties

Because the frequency domain specification ofHn(!) is such that

Hn(!) = 0; n = 0; 1; 2; ::: (11)

for ! < 0, the corresponding continuous temporal or spatial domain filters given by

hn(t) =
1

2�

Z 1

�1

Hn(!)e
j!td!; n = 1; 2; 3::: (12)

are complex quadrature filters.
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2.3 2D properties

It is useful to understand the properties of these filters in the 2D plane. Consider a polar
separable frequency domain specification of

Hn(!; �) = H!
n (!)H

�(�) (13)

whereH!
n (!) is the Erlang specification of the radial frequency component, andH�.

In this separable case, the following expression can be written for the inverse Fourier
transform

f(r; �) =
1

2�

Z 1

0

H!
n (!)

Z �

��

H�(�)ej!r cos(���)d�!d! (14)

An ”easy” form forH�(�) is

H�(�) = cos2 �rect

�
�

�

�
(15)

whererect is the unit width and height ”top-hat” function, given by

rect(x) = U

�
x+

1

2

�
U

�
1

2
� x

�
(16)

By expandingH�(�) in a Fourier series expansion (periodicity2�), and using

1

2�

Z �

��

e�jnu+j� cosudu = jnJn(�) (17)

one obtains (dropping the normalisingAn for simplicity),

f(r; �) =

Z 1

0

H!
n

1X
m=0

am cos(m�)jmJm(r!)!d!

=

1X
m=0

am cos(m�)

Z 1

0

H!
n j

mJm(r!)!d!

=

1X
m=0

jmam cos(m�)

Z 1

0

!n+1e��!Jm(r!)d! (18)

where the Fourier series coefficients converge rapidly; 98.03% of the power ofH�(�) is
in the first 3 terms of the series, so that the series of Bessel kernel integrals approximately
terminates atm = 2. From a table of integrals [3] the following indefinite integral is
obtained:Z 1

0

xm+1e��xJ�(�x) = (�1)m+1���
@m+1

@�m+1

(
(
p
�2 + �2 � �)�p

�2 + �2

)
(19)

where� > �(m+2) is real and� > 0. Thus, using 3 terms of the expansion of Equation
(18), leads to the following approximate analytic expression for the filters:

hn(r; �) � (�1)n+1
2X

m=0

jmam cos(m�)

�
1

r

�m
@n+1

@�n+1

(
(
p
�2 + r2 � �)mp

�2 + r2

)
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Figure 1: Real (left) and imaginary (right) parts of complex 1st order 2D steerable wavelet
at 0 degrees,� = 1. Plotted by evaluating Equation (20).
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For the casen = 1, this yields

h1(r; �) =
1

4

(
2�2 � r2

(�2 + r2)
5=2

� 3 r2

(�2 + r2)
5=2

cos(2�)

)
+ j

4

�

�r

(�2 + r2)
5=2

cos(�)

(21)
This is a complex function. Surface plots of the real and imaginary parts of this function
are given in Figure (1). Note that the axes of symmetry and antisymmetry for the real and
imaginary components are co-incident. This complex quadrature filter pair represents a
scale-tuned, oriented line and edge operator.
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Figure 2: Simplified block architecture consisting of three filter orientations at two scales.
First weight bank controls orientation steering, second bank, scale steering.S denotes
summation.

3 Scale and Orientation Steerability

3.1 Scale Steerability

The scale steerability of the filters arises through the properties of the Erlang frequency
domain specification. A particular order of filter at various scales,�, can be constructed
by weighting a number of Erlang frame functions of different order,n, with quite small
error. For a desired frequency characteristic, a set of weights can be computed which
minimise the error in the least squares sense. In particular, for a given filter family of
h�n(r; �), one can steer (synthesize) a response in� by weighted combination of a set of
N filter outputs, all with fixed�.

3.2 Orientation Steerability

Direction steering arises immediately from the use of thecos2(�) angular tapering in the
frequency domain. A theorem due to Simoncelli ([10]) states that exact angular steerabil-
ity over Fourier half space is provided by 3 rotated filters which span the space(0; �).
Intermediate orientations can then be synthesized by combining the filter outputs with
appropriately chosen weights [2].

3.3 Scale-Orientation Steering Architecture

The software architecture for scale and orientation steering is then as illustrated in Figure
(2), and its implementation is described in the following section.
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Figure 3: (Left) The 6 steering weights used to sweep the scale parameter from 0.200
to 0.975. (Right) The% error in the synthesized radial frequency characteristic at each
scale.

4 Steerable Filter Implementation

4.1 Filter Design

The filters were designed in the discrete Fourier domain, by evaluating the expression
H!
n (!)H

�(� � �k), where�k = f0; �=3; 2�=3g, at uniform intervals over a65 � 65
grid. A two dimensional inverse discrete Fourier transform was then applied to yield
the spatial impulse responses. These were truncated to15 � 15 complex filters. 6
different radial frequency specifications were used. The parameter sets for these were
fnigi=1::6 = [0; 3; 5; 7; 10; 15] andf�igi=1::6 = �=6[1=2; 1; 1; 1; 1; 1]. The weights for
synthesizing arbitrary scale filters for a4th order filter were computed by minimising the
total squared error between a desired scale value and that synthesized from the weighted
frame members. The scale setting,�, was varied from 0.200 to 0.975 in steps of 0.050.
The 6 weights as a function of� are plotted in Figure (3a), with the approximation error
across the scale parameter�, shown in Figure (3b). These weights are directly used in the
architecture of Figure (2).

4.2 Computational cost

Much of the computational cost is incurred in the filter bank. Once the ”frame images”
are computed, the construction of a steered image requires only 9 multiplications and 7
additions per pixel. A very small overhead is also needed for computing the weights for
an arbitrary radial filter specification. In this implementation, it is given by a product
between a6 � 32 matrix, computed once per frame set, and a32 � 1 desired radial
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Figure 4: (Left) The test image, generated according tof(r) = sin((r=6)2) wherer is
pixel distance from the origin. (Right) Positions of local maxima (�) of filtered image
and predicted locations (Æ) (desired trajectory).

frequency characteristic.

5 Validation

5.1 Scale Steering

As � is varied, one would expect the central radial frequency to scale as1=�. In order
to test this, a phantom was generated, consisting of a linear frequency modulation with
radial distance from the origin. The phantom is shown in Figure (4a); it contains all
possible spatial orientations (within the limits of discretisation error). A trajectory in
oriented scale-space was then designed, such that at a range of 16 scales, the synthesized
filter was steered through 8 orientations, spaced between0Æ and160Æ. To facilitate visual
interpretation, the same orientations were chosen at each scale. The scale/orientation-
space trajectory, using the modulation law and filter characteristics described in Section
2, is plotted in Figure (4b), along with the locations in the filtered image corresponding to
the local maxima of synthesized output magnitudes. Some steering error is clearly visible
at certain locations corresponding to finer scales. This error is orientation dependent. It is
introduced by the truncation error in restricting Fourier space to a65� 65 grid; at angles
between the grid axes, the error diminishes.

6 Applications

A test image for orientation and phase estimation consists of a set of 4 rectangular strips
with Gaussian intensity profiles across the shorter axis. The strip width variance parame-
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Figure 5: (Left) (a) The test image. (Right) (b) Pixels belonging to the class of ”strip
axis”, according to the steered magnitude and phase criteria described in the text.

ters are25:0, 12:5, 5:0 and2:5 pixel2. These are rotated to random angles using bilinear
interpolation. Gaussian distributed zero-mean white noise of unit variance is added, and
the resulting, heavily corrupted image, is shown in Figure (5a). Using outputs from three
orientations at a particular scale, the principal direction of orientation at each pixel loca-
tion is determined in a least squares sense. At all pixels, the phase relationship between
the real and imaginary part of each oriented complex filter is computed. The phase rela-
tionship is indicative of a strip-like (”fattened” line) neighbourhood character when the
angle is close to zero. A map of filter energy is also produced. Areas with high energy in-
dicate that the structure size of the neighbourhood is of the same order as that of the mask.
A simple classification process is applied to all pixels based on the following criteria: a
pixel is classed as belonging to the axis of a strip if its local oriented absolute phase is less
than 0.2 radians, and its filter energy is greater than a threshold determined heuristically
from the histogram of steered output magnitude. The result of this labeling is shown in
Figure (5b). A poor result is obtained for the widest Gaussian ”strip”, and indeed this has
a width well beyond that of the filter kernels used. Such structures are best analysed by
larger filter kernels, or by a multirate approach.

7 Conclusions

The filters described rely on properties of one-sided Erlang functions to yield complex
quadrature filters that are scale-steerable. Orientation steerability of these filters is achieved
by standard techniques. A test of the joint modal frequency and orientation steerability
was performed by applying the filters to a test image. Results were good, apart from at ori-
entation/frequency locations where mask design introduced errors in filter synthesis. This
could be overcome by increasing the retina used to define the frequency-domainmasks, or
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by an optimisation approach such as in [4]. Orientation of structures at a particular scale
was estimated using the oriented scale-space, and the steered phase was extracted from a
noisy test image. This was found to contain phase information identifying the medial axes
of the strips. Edges could be located using a similar procedure; one advantage of this ap-
proach is that all operations are performed in a global fashion, with no pixel-level coding
required for feature generation prior to classification. This can be contrasted with, for ex-
ample, zero-crossing edge-detection, where oriented searches for zero-crossings requires
extensive, pixel-level coding. Additionally, the filter phase relationship, an indicator of
the pixel’s neighbourhood structure, is decoupled from neighbourhood energy. Whilst the
scale-steerable nature of this family provides an advantage, comparative studies with well
known line/edge filter pair constructions are warranted. This includes comparisons with
complex Gabor and first and second derivative of Gaussian kernel pairs, and comparisons
with other single-kernel operators in the literature, such as those in [9], which have similar
impulse responses to either the real or imaginary part of these complex filters.
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