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Abstract

A method of extracting, classifying and modelling non-rigid shapes from an
image sequence is presented. Shapes are approximated by polygons where
the number of sides is related to the physical features of a shape class rather
than any particular shape. A method of ‘seeding’ the polygonal approxima-
tion is given where ‘seeds’ are automatically extracted from a set of data.
Multiple models are built using polygons with different numbers of sides
to allow for feature occlusion. Principal component analysis (PCA) is per-
formed on vector representations of the sides of the polygons which are nor-
malised by the total perimeter. This removes the need for normalisation of
scale and translation as required in the Point Distribution Model [16]. A ‘fit
score’ metric is defined which gives an indication of how well a given shape
fits a model.

1 Introduction

There has been much work carried out on the extraction and classification of non-rigid
shapes from image sequences. In this paper a new method of classifying images automat-
ically from an image sequence is proposed. This method is applied in the monitoring of
cattle movement to identify a particular non-rigid object in a scene (a cow in our example)
and gain knowledge about the way in which this object changes with time.

Kasset al [11] use an active shape model (snake) in which an energy function is
minimised to extract an object from a scene. Terzopoulos and Szeliski [15] have made
some refinements to this technique with the inclusion of Kalman filter techniques (Kalman
snakes). Blakeet al [3] have further refined the technique by adding ‘templates’ to this
process to incorporate a search for a specific shape. In recent years the advantage of such
model-based approaches has been shown where prior information about a class of shapes
is used in extraction and classification. The point distribution model (PDM) described by
Cooteset al [16] is a useful way of describing a class of non-rigid shapes where a shape
class is described by a fixed number of points. A model is built from a group of shapes
fitted with this fixed number of ‘reference points’ and principal component analysis (PCA)
is used to extract ‘modes of variation’ from the data set. Members of a shape class are
described with reference to an eigenspace where the axes are the eigenvectors produced
from the principal component analysis. A ‘valid’ shape is constructed by taking an area
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in this eigenspace centred around the mean shape (origin) and bounded by maximum
deviations along each principal axes which are related to the eigenvalues produced by
PCA and thus the variance within the data set. PDMs rely on accurate positioning of
points and can only describe accurately shape classes which deform in a linear fashion
which can result in invalid shapes being included in the model.

There have been a number of methods proposed for point fitting around a pre-extracted
contour [1, 2] which involve finding a number of reference points (points of high curva-
ture, extreme points etc) and adding extra points spaced evenly round the contour such
that the contour may be approximated by a spline. Hillet al [8] have proposed a new
scheme whereby a contour is approximated by an arbitrary number of straight lines as de-
fined by the critical point detection algorithm described by Zhu and Chirlian [19]. In the
comparison of two shapes the average number of points required to represent the shapes
is used and points are placed such that the distance between corresponding points around
the perimeter is the same proportion of the total perimeter for each shape.

The method proposed here extends this and seeks to find automatically the optimal
number of straight lines required to approximate a given class of shapes from a set of ex-
amples to enable accurate models to be built. It is hypothesised that this is related to the
physical nature of a particular class of shapes; in other words in an optimal representation
of shape lines will represent actual physical features rather than arbitrary straight line sec-
tions. For a given shape class multiple models may be required as non-rigid objects may
deform in ways which self-occlude physical features. As an extension to these ideas PCA
is performed on the lines (as a normalised vector representation) rather than on absolute
point positions which gives a scale and translation independent model. This results in the
definition of multiple eigenspaces. A ‘fit score’ metric is defined for each model which is
used to group members of the shape class according to the most appropriate model.

There have also been a number of developments on the original linear PDM which
use a number of ‘sub models’ to classify a class of shape more precisely. Bregler and
Omohundro [4] define a series of planes in the eigenspace whereas Heap and Hogg [7]
define a series of hyper-ellipsoid bounded regions in the eigenspace. Sozouet al[14] try to
solve the linearity problem of PDMs by constraining shapes to deform along polynomial
paths in the eigenspace rather than simply along the axes. There has also been work on
further eigen analysis of eigenspace to form a canonical space [9, 6] for which may be
useful for classification purposes. These developments, however, restrict the model to a
given eigenspace (i.e. a given number of reference points). In the real world we wish to
classify classes of shapes that deform non-linearly such that features are occluded and a
fixed number of reference points is not appropriate.

2 Initial Video Processing

The footage used is of cows walking in profile from a milking parlour. No attempt was
made to constrain the background. For model building purposes the raw video input is
pre-processed in two stages to produce a list of adjacent contour pixel points describing
the outline.

Firstly ‘background subtraction’ is carried out to produce a binary silhouette as shown
in Figure 2.1. A background image containing no moving objects is taken as a reference.
Each colour component (red, green and blue) of this image is subtracted in a pixelwise
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fashion from frames containing moving objects, the absolute value taken and the three
colour difference components summed. The result of this is a difference image with only
one colour component. Various image processing functions (blurring, median filtering,
dilation and erosion etc.) may be applied to this image if required to clean up and smooth
the image before it is thresholded to give a binary difference image as shown in Figure
2.1. (see [2]).

Figure 2.1: Background Subtracted Binary Image

The next stage is to extract the list of outline points. For model building purposes we
are not interested in complex tracking algorithms so we simply select the area with the
largest number of adjacent pixels as the object with which to build the model. The outline
is extracted by starting at the top left extremity of the selected area and ‘walking’ round
the edge in a 4-connective way (i.e. move up, left, down or right) until the initial point is
reached again.

3 Fitting Lines to Shape Outlines

There has been much written on the approximation of continuous functions by straight
lines [5, 13, 17, 18]. The general conclusion is that there is no ‘correct’ solution to such
problems. Methods that have been employed to perform such tasks generally fall into two
categories (i) Points of maximum curvature or (ii) Iterative end-point fits.

In (i) the continuous function is segmented by picking points of maximum curvature
for the continuous function. Curvature is calculated as the differential of tangential angle
[12] or less often as arc-chord distance [13]. This method works well for functions that
are mainly made up of straight lines but fails when the function has long arcs of constant
curvature. Hill and Taylor [1] use a system based on this method to fit points to the
outlines of human hand and heart outlines but then go on to approximate the outline by a
spline.

In method (ii) the continuous function is segmented using an iterative process. The
function is first approximated by a single straight line with end points chosen arbitrarily. If
the continuous function deviates from the approximation by more than a specified thresh-
old the line is divided into two lines at the point of maximum deviation. This process
continues until no point of interest on the continuous function deviates from the straight
line approximation by more than the chosen threshold. This method works reasonably
well for functions containing straight and curved segments but is sensitive to choice of
initial points. It is also sensitive to ‘wild’ points and any noise in the continuous function
may have a large effect on the final result.

The proposed method is a combination of the two methods with an additional iteration
that results in a more robust solution to the problem. Initially the tangential angle of each
point on a shape outline is calculated and from these angles curvature at each point is cal-
culated by differentiation. The selection of this method is purely arbitrary and curvature
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may equally well be calculated as arc-chord distance. Maxima of curvature are found
and lines between successive maxima points used as a first estimate of the straight line
approximation. It may be observed in Figure 3.3 that, due to perimeter roughness, there
are many more of these points than is necessary to approximate accurately the perimeter
and there are areas where there few points due to constant curvature These problems are
solved by the following procedure:

To Add Points Repeat:

� For each straight line in the approximation calculate maximum
perpendicular deviation of the contour. (see fig 3.1)

Figure 3.1: Maximum Perpendicular Deviation From Straight Line Approximation

� If the largest maximum deviation is greater than a specified
fit threshold add an extra reference point on the contour at
the point of maximum deviation replacing the straight line by
two new lines.

Until: No new points need be added.

Repeat:

� Remove Points : Consider each reference point and the
straight line between the two adjacent reference points.
If the perpendicular distance between this line and the point
is less than the specified fit threshold the point is unnec-
essary and may be removed. Points are removed in an order
such that the point with minimum deviation from its respec-
tive line is removed. Points are removed until no distance
is greater than the threshold. (see fig 3.2a)

� Adjust Points : Consider moving each reference point to
each of the two adjacent shape perimeter points. If a move
results in a lower average perpendicular deviation of the
perimeter from the two lines adjacent to the point and the
maximum deviation from both lines is not increased the move
is a valid one. Points are moved such that the move that
results in the greatest reduction in average deviation is
carried out first. Points are adjusted until there are no
more valid moves available. (see fig 3.2b)

Until: No further points need be removed or adjusted.

This method is robust in the fact that it produces approximations with similar numbers
of lines for similar shapes (see fig 3.5). It is not prone to erroneous results caused by the
fit being optimised locally as reported about methods described previously [5]
Note that the effect of the ‘Adjust points’ algorithm is limited and reasonably satisfactory
results may be obtained without this stage if speed is an important issue. This gives a
large increase in speed as the ‘Remove points’ stage must only be performed once rather
than at least twice if the ‘Adjust points’ stage is included. The ‘Add points’ stage may
also be removed although the speed advantage is less.
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Figure 3.2: (a) Removing Unnecessary Reference Points, (b) Adjusting the Position of
Reference Points

Figure 3.3: Maxima of Curvature

Figure 3.4: Straight Line Approximations to Outlines

4 Building Models from Outline Data Using Seeds

The method described in the previous section produces some aesthetically pleasing cow
outlines but the number of lines required varies from shape to shape. Even fairly similar
shapes may be represented by slightly different numbers of lines. This is a disadvan-
tage when trying to build a concise model of shape using mathematical methods such as
PDM’s ([16] and [2]). These methods enforce a pre-determined number of points upon
the shape regardless of the shape to be modelled. Using common sense a human subject
will approximate groups of similar shapes with the same number of lines and different
groups with different numbers of lines where these lines will correspond to actual physi-
cal features. This approximation is not only based on the outline of a particular shape but
on prior knowledge of the object. An extension to the line fitting method proposed in the
previous section includes prior knowledge about the shape we are trying to extract using
of a ‘seed’ to start the line fitting process. A seed is created by hand placing reference
points around the perimeter of a single shape belonging to the class to be modelled and
converting these points into a series of vectors with an angle component and a magnitude
component that is a proportion of the total distance around the perimeter of the shape.

The perimeters of the training shapes are divided up into sections with length propor-
tional to the magnitude components of the seed vectors. In the system implemented the
centre point of the largest seed vector is placed at the centre point of the longest line in
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the straight line approximation calculated as in the previous section. It is obvious that this
method will only work for shape classes where the longest line is a significant physical
feature and a more complex method would be required to fit the initial guess if this were
not the case however this works well for our example as a cows back is always its longest
straight physical feature. Reference points are placed at the nearest maxima of curvature
to each intersection of the sections calculated.

This first guess is improved using iterations minimising two criteria; the integral dif-
ference (area) between the straight line approximation and the actual shape contour and
the difference between the seed vector angles and the straight line approximation angles.
The integral error was used rather than average or maximum deviation from the approx-
imation as it provides better information on the quality of the fit. It was observed that
the two criteria often conflict and thus algorithms involving iterations that try to minimise
both simultaneously are not well conditioned for all shapes. Several algorithms were tried
but none converged reliably to a solution for any significant number of test shapes. Algo-
rithms that minimise both criteria separately were designed and found to be much more
robust converging to a solution for all test shapes. These algorithms are applied to the
first guess sequentially with the two iterations performed several times until convergence
of each of the iterations (for the test images used this was approximately three times).
Obviously as the two criteria may conflict the results from the two iteration algorithms
differ slightly at the final stage and as such the order that the two iterations are carried
out is important. It was decided that the angle error minimisation would be carried out
first followed by the integral error minimisation. This resulted in a better approximation
as generally the angles of the test shapes were not identical to those of the seed shape. Ei-
ther way round, however, acceptable results were produced. The algorithms are described
below:

To Minimise Angle , Repeat :

1. For each reference point the two adjacent lines are examined.
The absolute difference in angle between these lines and the
corresponding lines in the seed is calculated and the two
values summed. (see fig 4.1a)

2. For each reference point, moves to the two adjacent points
of maximum curvature are considered and the sum of the angle
differences calculated as in stage 1.

3. The point move that results in the biggest reduction in angle
difference is performed.

Until: No move results in a reduction in angle difference.
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To Minimise Integral , Repeat :

1. For each reference point the two adjacent lines are examined.
The integral error (area) between these lines and the actual
perimeter is calculated and summed. (see fig 4.1b)

2. For each reference point moves to the two adjacent points of
maximum curvature are considered and the sum of the integral
errors calculated as in stage 1).

3. The point move that results in the biggest reduction in total
integral error without merging reference points is performed.

Until: No move results in a reduction in integral error.

� Note: Moves to adjacent maxima of curvature are considered in these iterations
rather than moves to adjacent perimeter points to speed up the operation. This has
little effect on the final result.

Figure 4.1: (a) Minimising Angle Difference between Data Frame and Seed, (b) Minimis-
ing Integral between Perimeter and Straight Line Approximation

For each frame a fit score is calculated using the formula:

Fit Score =

No:LinesX

n=1

Integral Errorn �AngleDifferencen (1)

For the data set used (a sequence of a cow walking) there are shape discontinuities
related to the fact that when a cow’s legs come together the number of lines required to
represent the shape accurately falls. For this reason three ‘seeds’ were used, one with legs
apart, one with front legs together and one with rear legs together. The training data was
thus partitioned into three groups depending on which seed resulted in the lowest fit score
for a particular frame. Frames that had a particularly high fit score (greater than a chosen
number of standard deviations from the mean) were discarded for the first iteration. The
remaining frame fits were converted into vectors and averaged to produce three new seeds.
These seeds were applied to the entire data set in the same way as before. This process was
iterated until the difference between the averaged output was not significantly different
from the seed input. Figure 4.2 shows how the frames were grouped in the final iteration.
This shows clearly the cyclic nature of cow walking behaviour and how the models may
be used in tracking and behavioural studies. In the frame where no model fits satisfactorily
the cow is in a transitionary state (front legs crossed). This suggests a fourth seed may be
required. Eigen analysis was performed on the vectors of the three final groups of shapes
and modes of variation are shown in fig 4.3.
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Figure 4.2: Grouping of Successive frames to Form Shape Models

Model

Mode of Variation
(1) (2) (3)

(1)

(2)

(3)

Figure 4.3: Average and Modes of Variation of the Three Shape Models

5 Automatically Extracting Seeds from Outline Data

The results from the ‘hand seeded’ method described previously are reasonably good but
rely on human perception of the number of lines required to represent a given class of
shapes and thus the method is not repeatable for an arbitrary shape class. Automation of
the seeding process is also desirable if a large number of shape classes are to be extracted
from a data set. The method devised uses straight line approximations as extracted in sec-
tion 3 as initial seeds and a simplification stage to reduce the number of points necessary
to describe a shape class. The straight line approximations used are calculated using the
‘fit score’ described in the previous section using the following method:

1. A similarity matrix is calculated by using each straight line
approximation as a seed, fitting it to each other frame and
calculating the ‘fit score’ (see equation 1).
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2. The matrix is made symmetric by multiplying by its transpose
to give a single similarity metric between pairs of frames.

3. Each row is summed to give a similarity score for each frame.
The frame with the lowest score (i.e. the frame most similar
to all other frames) is selected as the first seed frame.

4. The frame that is most different from the frame selected in
3) (i.e. the frame with the highest ‘fit score’ in the first
seed frame row of the similarity matrix) is selected as the
next seed frame.

5. Successive seed frames are selected as the frame that is most
different from any previously selected frame. This is done
by taking the rows in the similarity matrix for all previ-
ously selected frames and finding the lowest element in each
column. The frame corresponding to the highest of these val-
ues is chosen as the next seed frame.

The number of seed frames used may be selected directly or on goodness of fit criteria.
Goodness of fit criteria such as putting a lower limit on the similarity value at stage 5) are
useful but should be used with caution as criteria may change from one shape class to
another.

Once the seed frames are selected they are fitted to the data and grouped as in section
4. After each iteration the groups are converted into vectors and averaged as previously
but then converted back to points using the average perimeter as a scaling factor. The
number of these points is reduced using the ‘remove points’ algorithm described in section
3 in which points which are close to a the straight line between the adjacent two lines are
removed. This simplified average is converted back into vector form and used to seed the
next iteration. This algorithm can lead to the shape being over simplified. A modification
to the algorithm may be incorporated to solve this problem whereby the ‘remove points’
algorithm is no longer performed at the point where the seed ceases to fit the data to a
satisfactory degree as defined by the ‘fit score’. The unmodified version resulting from
the previous iteration is then used as the seed for the next stage. From now on the ‘remove
points’ algorithm is no longer applied and the iteration works exactly as in section 4.

This method produces aesthetically pleasing results as can be seen in the models pro-
duced (see Figure 5.1) but there is room for refinement in two areas. Firstly fitting each
frame to each other frame is computationally expensive. If speed were an issue it is
obvious to see how this stage could be refined to use fewer comparisons by identifying
similar shapes from the first few frame fits. Other refinements to this method could be
implemented in the dynamics of the iteration. Over-simplification was observed to be a
problem and the solution provided, although reasonably robust, is fairly basic. There is
much scope for subtle refinement of this iteration, however this has not been investigated
as the presented method was observed to perform satisfactorily for the purposes intended.

6 Discussion

The methods described in the previous sections produce some very satisfactory results.
Class extraction is obviously not a new concept and this has been explored by Heap and
Hogg [7] among others but the difference here is that the classes are extracted without
reference to a specific eigen domain. This removes the need for inappropriate point fitting
algorithms that fit a pre-defined number of reference points to a shape regardless of the



British Machine Vision Conference 407

Seed Frame Iteration 1 Iteration 2 Iteration 5 Iteration 7

Figure 5.1: Mean Model Over Several Iterations of the Model Building Process

physical nature of that shape. In this method the number of points is extracted from
the complete data set for a class of shapes rather than an individual shape. The vector
representation of shapes used in the eigen analysis of the shape classes removes the need
for complex algorithms to normalise shape scale and translation as used by Cooteset al
[16] as the vector description is independent of scale or translation. No attempt is made
to normalise rotation in this scheme as the subject of the study (cows) are not observed to
rotate with respect to the ground plane and so fixing a camera with respect to the ground
plane eliminates any rotational component in the input sequences. The models built by
the methods described may be used for many purposes. The most obvious is classifying
groups of shapes which may be anything from components in an assembly line to organs
in a human body. Other applications include object tracking [2] and behaviour prediction
[10].
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