
Improved Video Mosaic Construction by
Accumulated Alignment Error Distribution

Manuel Guillén González, Phil Holifield and Martin Varley
Department of Engineering and Product Design

University of Central Lancashire
Preston PR1 2HE, UK

m.guillen-gonzalez@uclan.ac.uk

Abstract

Mosaic techniques have been used to obtain images with a large field of
view from video sequences by assembling individual overlapping images. In
existing methods of mosaic construction only consecutive frames are
aligned. Accumulation of small alignment errors occur, and in the case of
the image path returning to a previous position in the mosaic (looping path),
a significant mismatch between non-consecutive frames will result. A new
method for ensuring the consistency of the positions of all images in a
mosaic is proposed. From the resulting improvement in mosaic quality, the
new method enables construction of mosaics with a very large field of view.

1    Introduction

In recent years, computers have experienced a huge expansion of transmission, storage
and processing capabilities, at the same time they have become commonplace in our
homes. Video capture technology is available at low prices, but often does not give
good resolution or field of view. Video mosaicing is a convenient way to capture
images without such limitations.

Since the beginning of photography, mosaics have been used to obtain images with
a larger field of view by assembling two or more individual overlapping images [1].
Today’s applications include the scanning of large realistic images from the real world
to generate virtual environments [2].

The construction of mosaics from video begins with the alignment of successive
images. Using their relative positions, the images can be integrated in a single large
picture. Projective transformation and lens distortion have been successfully modelled
[3], so image alignment is not a major problem in mosaic construction. The aim of this
paper is to show that a new step must be introduced in the mosaicing process to
account for problems that occur when the camera follows a loop (looping path). This is
the case, for example, when a camera pans in one direction then pans back to the
starting position. In almost all existing methods of image registration, consecutive
frames of a video sequence are aligned. Accumulation of small alignment errors occur,
and in the case of the image path returning to a previous position in the mosaic, a
significant mismatch between non-consecutive frames will result.
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It has been shown [4, 5] that instead of aligning successive images, the alignment
can be done between an image and the actual mosaic as it is being composited. This
may be an improvement with respect to the frame-to-frame alignment method, but
loops involving large numbers of images result in distortions in the mosaic.

A new method for ensuring the consistency of the positions of all images in the
mosaic is proposed, resulting in general improvement of mosaic quality and making it
possible to create mosaics with a very large field of view, including spherical mosaics.
The spherical mosaic is a two-dimensional mosaic mapped onto a sphere, and has
applications in virtual reality environment maps [6].

2    Mosaic Construction

The basic processing steps involved in video mosaic construction are well known [7],
and can be summarised as follows:

Image alignment: Determines the transformation that aligns two successive images, or
one image with the current mosaic. In some cases simple translation and rotation
operations correctly describe the transformation, in others, a projective
transformation is needed.

Image integration: Consists of the selection of non-overlapping areas in the images
that will contribute to the final mosaic or the combination of pixel intensities from
overlapping images. Further blending of neighbour images is necessary to reduce
the visibility of seams due to differences in intensities.

2.1    Image Alignment with Progressive Complexity

To determine the transformation that aligns two images, the different existing
techniques can be divided in two types. The first identifies and matches common
features in a pair of images such as lines [8], corners, text [9], etc. and uses them as
references to align the two images. This method imposes limitations on the content of
the images being aligned, for they must contain such features. The second type finds
the  transformation that minimizes the sum of the squared intensity errors for all
overlapping pixels as shown in (1), therefore relying on the pixel intensities as
features. For this method to work properly, there must be intensity variations in the
images.

[ ]E x y x yi n n j n n

n

N

= − ′ ′∑ I ( , ) I ( , )
2

(1)

where Ii is image i
I j is image j after the transformation is applied
N is the number of overlapping pixels
x yn n,  and ′ ′x yn n,  are related by the transformation matrix

A rigid transformation would only involve translation and rotation of the images, while
a projective transformation requires more parameters to be considered. The distortion
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introduced in the acquisition process by the camera lens must also be modelled and
corrected if accurate alignments are to be obtained.

The rigid transformation that aligns image Ii with image Ij is given using
homogeneous coordinates in matrix form as follows.
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where dx, dy are the translation in pixels and θ is the angle of rotation.
It has been shown that in image alignment, the use of transformation models with

progressive complexity reduces the computation cost [4, 10]. Although for the rigid
transformation there are only three parameters to be computed, two for the translation
and one for the angle of rotation, a simpler model involving translation solely can be
used initially for the alignment. Then, using this translation component, the angle of
rotation can be computed.

 DO {
shift = CALC_TRANSLATION(image i, image j)
TRANSLATE_IMAGE(image j, shift)

angle = CALC_ROTATION(image i, image j)
ROTATE_IMAGE(image j, angle)

 } UNTIL better accuracy cannot be achieved

Figure 1: Steps for calculating the translation and rotation alignment between
two overlapping images using transformation models with progressive
complexity.

This particular implementation starts by finding the translation (CALC_

TRANSLATION) that best aligns the pair of images, that is, parameters dx and dy in
(2). This offset does not account for the rotation between the images, but since the
angle of rotation is small between successive images it may be neglected at this stage.
Then, once the translation has been calculated, the angle θ is worked out
(CALC_ROTATION). This process of adjusting translation and then rotation is
repeated in several passes until better accuracy cannot be achieved. This normally
requires no more than 2 or 3 passes. The steps are summarised in Figure 1.

Although the accuracy that can be achieved in image alignment is excellent when
assessed by the human eye, it is not error-free. A small error is always present and will
manifest itself after a number of successive image alignments.

2.2    Translation

Laplacian pyramids have been used for the computation of translations. Smaller
images are created from the original images by averaging blocks of pixels. A
translation is computed for these smaller images which is then used as an initial
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position to compute the translation of the original images. A detailed description can
be found in [10].

It has been found that it is important to follow all local minima to the next pyramid
level, especially for document images where false matches at the lower resolution
levels may occur due to the repetitive nature of text lines.

2.3    Rotation

Rotating an image is a time consuming operation, in particular when subpixel accuracy
by means of interpolation is necessary. The process that has been used for the
computation of the angle of rotation between two images involves the mapping of a
circle onto a rectangle as shown in Figure 2. This warping takes a radial line from the
source image (e.g. Figure 2a) and maps it into a row (e.g. Figure 2c), corresponding
directly to a mapping from the polar coordinate system to the Cartesian coordinate
system, i.e. (r, θ) → (x, y).

A vertical translation in the warped image (Figure 2c) is equivalent to a rotation in
the original image (Figure 2a). Thus the problem of minimising the error function for
different angles is reduced to a vertical translation matching, which is computationally
less expensive and uses the same algorithms developed for translation alignment.

(a) (b) (c)
Figure 2: By warping from the polar to the Cartesian coordinate system, finding
the alignment angle between two images is reduced to a vertical matching.
(a) Original image. (b) Area to be warped onto a rectangle. (c) Effect of warping
a circle onto a rectangle.

2.4    Image Integration

Once the position of the images are known they can be integrated in the mosaic. Each
pixel in the mosaic is taken from the image whose centre is the nearest among all
image centres. This scheme corresponds to Voronoi tessellation [11], which, given the
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position of the centres of the images, defines a polygonal area for each image that will
be pasted on the mosaic.

3    Looping Path Problem

In constructing mosaics from video sequences, almost all existing methods have used
parameters computed by successive image alignment. Cumulative alignment errors
occur when the position of images in the mosaic is based on successive image
alignment only.

Although good alignment is achieved between successive images, cumulative errors
cause poor alignment when the image path follows a loop, i.e. when the same area of
the scene is covered by images which are distant in the sequence. This problem has
only been identified in literature [4, 5], and has not been satisfactorily solved.

In Figure 3, assuming a perfect loop has been followed by the camera, images 1 and
60 should overlap perfectly, but misalignment error occurs due to accumulation of
small errors in each successive image alignment. The effects of the looping path
problem are dramatic when large numbers of images are involved in the loop. In
addition, the misalignment of neighbour images is unavoidable even when the frame-
to-frame displacement has been computed very accurately.

The alignment between images 1 and 60 in Figure 3 is inconsistent with the
position of the rest of the images. Previous attempts at solving this inconsistency align
the images with the mosaic as it is being composited [12]. Using this approach will
result in a poor quality mosaic when a large number of images are involved in a loop,
which is the case for large field of view mosaics. There will be cases where the next
image to be aligned with the current mosaic will need to fit two or more different
transformations and distortion will be inevitable (e.g. image 60 in Figure 3 will be
distorted when aligned with image 59 and with image 1).

A new step must be introduced in the mosaicing process to account for the looping
path problem. The proposed solution seeks to distribute the accumulated error of the
positions of all images in the mosaic.

misalignment
image 1

image 20

image 30image 50

image 60

sweep direction

Figure 3: Misalignment error between image 1 and image 60 due to
accumulation of small errors in successive image alignment.

3.1    Solution

Neighbour images are those which share a boundary in the mosaic. Each pair of
neighbour images are related by a relative position t ij computed using the alignment
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method explained in section 3. For the rigid model, a translation (dx, dy) and a rotation
angle dθ of image j with respect to image i, correctly describes their relative position.

t ij
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A premise is introduced here: the relative position of a neighbour pair of images can be
modified slightly without introducing a visible loss in quality. Such a change from its
computed position must not exceed a fraction of a pixel if the seam is to remain
unnoticeable.

T ij represents the correct relative position that aligns images i and j consistently
along with all other images in the mosaic. The cost for this consistency is a slight
modification ∆ij of the computed relative positions of the images.

T ij = t ij + ∆ij ∆ ij
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Figure 4: Example of mosaic composed from a sequence of 4 images.

In the sequence of 4 images shown in Figure 4, the pairs (1,2), (2,3), (3,4),  (3,1),
(1,4), (2,4) are neighbour images. The transformations that align them are t12, t23, t34,
t31, t14 and t24. An equation can be established for each possible route connecting the
images:

T12 ⊕ T23 = T13 ∴ (t12 + ∆12) ⊕ (t23 + ∆23) = (t13 + ∆13)
T12 ⊕ T24 = T14 ∴ (t12 + ∆12) ⊕ (t24 + ∆24) = (t14 + ∆14) (5)
T23 ⊕ T34 = T24 ∴ (t23 + ∆23) ⊕ (t34 + ∆34) = (t24 + ∆24)
T31 ⊕ T14 = T34 ∴ (t31 + ∆31) ⊕ (t14 + ∆14) = (t34 + ∆34)

where ⊕ means composition of transformations.
The minimum values of ∆ij that satisfy equations 5 give the set of relative positions

T ij that consistently align all images in the mosaic.
Although a solution can be found that minimises ∆ij, its implementation becomes

impractical for a large number of images, which is the case in reality. A different
approach to the problem is therefore necessary.
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3.2 Proposed algorithm

The proposed method for consistently aligning all images in the mosaic is explained in
this section.

For a sequence of N images, the relative positions { t01, t12, t23, ... tN–2 N–1} that
align successive images are computed. Then, the initial positions of the images in the
mosaic { P0, P1, P2, ... PN–1} can be calculated, as shown in equation 6, by composition
of the transformations that align successive images in the sequence.

P0 =
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where the meaning of ⊕ is given in (7).
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So far this corresponds to successive image alignment.

P4

t34
P3

t23

P2

t12

P1

t01

P0

t04

∆04

Figure 5: Relation between the positions of the images in the mosaic P0, P1, P2,
P3, P4 and the relative positions t01, t12, t23, t34 that align successive images. ∆04

is the error between the computed relative position of images 0 and 4 (t04) and
their actual relative position in the mosaic (P4 – P0). The circles represent the
centres of the images.

Let ∆ij be the difference between the constant relative position of images i and j (t ij)
and their relative position in the mosaic (Pj – Pi), which will be modified. ∆ij represents
the error between the computed relative position of images i and j and their actual
relative position in the mosaic.

∆ij = t ij – (Pj – Pi) (8)

Initially, for successive images (i.e. j = i+1), ∆ij = 0. For the rest of the neighbour
images ∆ij ≠ 0 due to the accumulated error in the successive alignments between the
images i and j, that is, the error to be reduced. An analogy with a physical model is
introduced, consisting of a network of connected nodes representing the centres of the
images on which forces are exerted in order to change their position. The links
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between nodes are defined by the transformations that align neighbour images (see
Figure 5). In this analogy f(∆ij) represents the force pushing image i towards the right
position with respect to image j, where the function f will be defined later in this
section.

Let {n1, n2, n3, ... nm} be the m neighbour images of image i. Each of its neighbour
images will exert a force upon image i, ∆i is the resultant summation of these forces.

∆ ∆i i n

k

m

k
= ∑

=1

(9)

The refinement process that leads to a consistent set of positions is accomplished in an
iterative fashion. For each iteration the forces acting on all images are calculated, then
their positions are modified accordingly. The loop ends when equilibrium is achieved,
i.e. ∆i ≈ 0,   0 ≤ i ≤ N–1.

The positions of the images (Pi) are modified by small increments. These
increments are a function of ∆i.

Pi → Pi  + f(∆i) (10)
The performance of the function f(∆i) is assessed by inspection of the overall distortion
E and the error for the worst case Emax once the equilibrium is achieved.

E = abs( )∆ ij∑ Emax = max{abs( ) ,      neighbour images}∆ ij ∀ i,j (11)

Different approaches have been tried to model f(∆i). The function that gives the
minimum error and the fastest convergence was found to be proportional to the square
of ∆i (shown in equation 12). The constant k is a small number required to maintain
the stability of the system, since large increments lead recursively to even larger
increments.

f(∆i) = k
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After the positions {P1, P2, P3, ... PN} have been readjusted, new pairs of images may
have become neighbours and some may no longer have common boundaries. In the
case of new neighbour images appearing, their alignment transformation will be
computed and the readjustment process performed again until no new neighbours arise.

At the end of the process the cumulative error is spread across all images, and
therefore no single pair of images show a marked misalignment.

4    Experimental Results

The technique for solving the looping path problem has been tested with various sets of
images resulting in excellent overall improvement of the mosaic. See Figures 6 and 7
for illustrative results.

The errors in the positions of the images (E and Emax in equation 11) are shown in
Tables 1,2 and 3, for three different mosaics. ‘Text 1’ is a mosaic of a text document.
Mosaic ‘Text 2’ is the same text with a superimposed grid used to assess visually the
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quality of the seams. The images for the mosaic labelled ‘Lab’ were obtained with a
hand held video camera from a fixed location, and despite the parallax and the
distortion from mapping of a spherical view on a flat image, the results are promising
(Figure 8).

Image 0

Figure 6: (a) Path followed by the camera. (b) Mosaic ‘Text 1’ (1663x2320
pixels), composed of 141 images (736x560 pixels). The grey levels represent the
areas in the mosaic used from each particular image.

Figure 7: Details of mosaic ‘Text 1’. Left, successive image alignment only,
showing looping path problem. Right, corrected positions of images.

‘Text 1’ Emax Between Images Sum Error E
Average Error

per seam

x (pixels) 0.6823 128 and 118 63.11 0.1783
y (pixels) 0.5386 105 and 57 75.63 0.2136
θ (rads) 0.002597 7 and 6 0.3728 0.001053

Table 1: Mosaic ‘Text 1’, 141 images, 354 pairs of neighbour images. The table
shows the errors present after readjustment. In the worst case the images have
been displaced by about half a pixel from their computed position.

‘Text 2’ Emax Between Images Sum Error E
Average Error

per seam

x (pixels) 0.5627 71 and  65 28.56 0.1527
y (pixels) 0.5162 16 and  15 46.35 0.2479
θ (rads) 0.003333 71 and  65 0.1636 0.0008749

(a) (b)



British Machine Vision Conference386

Table 2: Mosaic ‘Text 2’, size 1481×2139 pixels, 80 images, 187 pairs of
neighbour images. Final errors.

Figure 8: Mosaic ‘Lab’. Left, successive image alignment only, showing looping
path problem. Right, corrected positions of images.

‘Lab’ Emax Between Images Sum Error E
Average Error

per seam

x (pixels) 0.9934 123 and  62 71.64 0.2372
y (pixels) 1.0576 82 and  81 77.65 0.2571
θ (rads) 0.01610 123 and  65 1.186 0.003927

Table 3: Mosaic ‘Lab’, 130 images, 302 pairs of neighbour images. The errors
are higher than in the other mosaics due to errors in the computation of image
alignment caused by parallax. In addition, the field of view is about 90°, so
further distortions are introduced by the mapping onto a plane.

5    Conclusions

It has been shown that a new step must be introduced in video mosaic construction to
account for the looping path problem. Cumulative errors occur in successive image
alignment, and in the case of the image path returning to a previous position in the
mosaic, a significant mismatch between non-successive images will result. The
proposed solution makes use of the alignments between all neighbour images to
consistently position the images on the mosaic. Starting with the successive image
alignment positions, these are modified by small increments to reduce the overall
misalignment error.

Since the field of view is not a limitation when using this approach, 360° mosaics
can now be produced. Current research aims at full spherical mosaics for applications
in Virtual Reality.

Considering the projective transformation matrix as a representation of the position
and orientation of a camera in space, an analogous method using forces can be used for
the consistent alignment of all images in the mosaic using the projective model.
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