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Abstract

In a recent paper we described a method for assessing the accuracy of polyg-
onal approximation algorithms [16]. Here we develop several measures to
assess the stability of such approximation algorithms under variations in their
scale parameters. A monotonicity index is introduced that can be applied to
analyse the change in the approximation error or the number of line segments
against increasing scale. A consistency index quantifies the variation in re-
sults produced at the same scale by an algorithm (but with different input
parameter values). Finally, the previously developed accuracy figure of merit
is calculated and averaged over 21 test curves for different parameter values
to obtain more reliable scores.

1 Introduction

Recently there has been a surge of interest in the performance evaluation of computer
vision algorithms and systems. Whereas in previous years comparative analysis often
consisted solely of the visual inspection of various algorithms, nowadays there is more
emphasis on quantitative assessment. This can take the form of analytic or Monte Carlo
error propagation and sensitivity analysis, or various indices describing general or specific
characteristics of the algorithm or task.

For the problem of segmenting curves into straight lines there has been relatively
little development or application of performance evaluation. Some recent work by Ji and
Haralick [9] on a curve segmentation algorithm based on intersecting two lines uses error
propagation to determine the effect that noise on the data has on the orientation of the
fitted lines. In addition, they manually determined a groundtruth set of edge data which
enabled them to calculate breakpoint misdetection and false alarm rates. These rates were
then plotted against the algorithm parameters (window length and angle threshold) so
that the sensitivity of the algorithm’s performance relative to changes in these parameters
could be assessed. Previously Zhanget al. [18] also systematically varied the parameters
of the data so that the algorithm’s accuracy could be measured against the arc length and
the subtended angle of the corner.

Kadonaga and Abe [10] also incorporated human assessment; theirs consisted of 1/
evaluation of the algorithms’ results by a human panel, and 2/ a set of target segmentations
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obtained by 18 human subjects. The first directly produced an assessment value while for
the second the breakpoints produced by the various algorithms were scored according to
how similar they were to human selected breakpoints. The score took into account (in
a rudimentary manner) the number of humans that selected similar breakpoints, and the
degree of certainty of the human’s selection. To measure the algorithms’ robustness their
performance was measured on input data which was transformed by rotation, scaling, and
reflection.

Rosin [16] compared various algorithms according to criteria such as integral squared
error (ISE), maximum deviation, etc. Previously a problem with this approach was that if
the algorithms produced different numbers of breakpoints their errors could not be mean-
ingfully compared. This was circumvented by comparing all the algorithms against the
optimal segmentation for the appropriate number of lines rather than directly against each
other. The assessment value consisted of the geometric mean of two factors: fidelity and
efficiency. Fidelity measured how well the suboptimal polygon fitted the curve relative
to the optimal polygon in terms of the approximation error. Efficiency measured how
compact the suboptimal polygonal representation of the curve was, relative to the optimal
polygon which incurred the same error.

The work presented here was originally motivated by a new class of methods for find-
ing polygonal approximations of curves. Although the results were initially promising,
several anomalies showed up. This led to the development of some performance measures
in order to quantify these problems. In this context section 2 describes the measures and
section 3 applies them to some well established algorithms from the literature.

2 Assessment Measures

To verify the robustness of the algorithms their behaviour under various conditions needs
to be determined. There are two factors that can be altered: the algorithm parameter
values (a chord length, i.e. window size), and the data. To visualise the first we gener-
ated scale-space type plots which are formed by plotting for each parameter value tested
the breakpoint indices produced by six versions of the algorithm. Observing these plots
(figure 1) we note several types of behaviour of the algorithms’ selection of breakpoints:

� oscillation – The location of some breakpoints moves back and forth as the chord
size is gradually increased (e.g. figure 1a and 1e).

� systematic drift – The location of some breakpoints systematically moves in one
direction as the chord size increases (e.g. figures 1c and 1e).

� general shift – Other breakpoints move with increasing chord size, but their shift is
neither constrained to one direction, nor regularly oscillating (e.g. figure 1d).

� discontinuities – In several cases (e.g. figures 1b, 1d, and 1f) breakpoints suddenly
jump to a new distant position when the chord size is incremented slightly.

� new breakpoints – Sometimes additional breakpoints are created as the chord size
increases (figures 1c and 1f). This is counter to our expectation that increasing the
scale parameter should generally decrease the number of detected features.
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Quantifying these behaviours might prove laborious, requiring tracking points through
scale-space. Moreover, in some cases it is unclear whether the behaviour is necessarily
undesirable or could be just a natural outcome from the specific data set. For instance,
does systematic drift indicate improved localisation or merely algorithm instability? Like-
wise, discontinuities might indicate instability of the algorithm or might occur due to a
transition between natural scales [16]. Therefore to simplify matters we collapse the
scale-space plots into 1D graphs enabling some computationally simple and unambigu-
ous measures to be extracted.
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Figure 1: Scale-space plots of breakpoints

2.1 Monotonicity Measure

The input parameter of the algorithms evaluated above is effectively a scale parameter.
Therefore, if the number of lines (or equivalently the number of breakpoints) produced
by an algorithm is plotted against the input parameter then we would generally expect
to see a monotonically decreasing curve since at larger scales there are fewer dominant
points. Likewise, for some error measure (e.g. ISE) the error value should monotonically
decrease as the input parameter increases. For the six algorithms these two curves are
plotted in figure 2 and figure 3 where it can be seen that in fact they are not monotonic.
This can pose a problem when using an algorithm since it makes it difficult to select
appropriate parameters (either manually or automatically) if the effect of changing these
parameters is not predictable.

To quantify the degree of this irregularity we introduce a monotonicity measure. It
involves calculating the amount of decreaseT� over the plot which we determine by inte-
grating the gradient over all negative gradient values. Likewise, we integrate the gradient
over all positive gradient values to determine the amount of increaseT+. For the discrete
plot (xi; yi) this effectively becomes

4yi = yi � yi�1

T� = �

X
84yi<0

4yi

T+ =
X

84yi>0

4yi:

However, since we would expect the error plot to be steeper when the error is larger we
normalise the values by their heighthi

hi =
yi + yi�1

2
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Figure 2: Number of lines versus chord size
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Figure 3: Integral square error versus chord size

T� = �

X
84yi<0

4yi

hi

T+ =
X

84yi>0

4yi

hi
:

The gradient of the line versus chord size also decreases with increasing chord size, and
so we apply this normalisation for both plots. For all but the worst cases the amount of
decrease will exceed the amount of increase, and so we combine the values as

MD =

�
1�

T+

T�

�
� 100:

This will generally produce a value in the range[0; 100] (but will be negative for extremely
bad instances), where perfect monotonicity scores 100. As well as measuring monotonic
decrease we can measure monotonic increase too

MI =

�
1�

T�

T+

�
� 100:

A useful property of the measure is that it is independent of scaling of abscissa. This
enables it to be applied to different algorithms whose parameter values have different
scales, even if they are related by some non-linear function.

2.2 Consistency Measure

We have seen in figures 2 and 3 how the number of lines and the approximation error
can increase even as the chord size increases. Another aberration we have noted is that
when different parameter values produce polygons with the same number of lines these
polygons may differ. This applies both to adjacent and non-adjacent parameter values.
Since these different approximations tend to have different errors we can show this incon-
sistency by plotting the errors against parameter values; see figure 4.
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Figure 4: ISE versus number of lines

We propose a measure to quantify this inconsistency. It uses the range of error values
ri produced by the algorithm for a given number of linesi in the approximating polygon.
Again, like the monotonicity measure, the value is normalised. It is divided by the height
of the midpoint of the spanhi. The final consistency measure is summed over all numbers
of lines produced by the algorithm

C =
X
i

ri

hi

2.3 Other Measures

2.3.1 Figure of merit

In our previous work a figure of merit was generally calculated for an algorithm at just
one or two parameter settings. However, when merit is plotted against parameter value for
the six new algorithms we see that the graph fluctuates considerably (figure 5). In other
words, careful selection of the algorithm’s parameter values can produce a misleadingly
favourable rating. This suggests that the mean and variance of the figure of merit over a
range of scales would provide a more meaningful assessment.
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Figure 5: Merit versus chord size

2.3.2 Endpoint shift stability

So far we have just discussed measuring the effects of varying the algorithms’ parameters.
Obviously we can also perturb the data and measure the stability of the number of break-
points, ISE, breakpoint location, merit, etc. We will not pursue this course of action in this
paper, but will give just one example demonstrating the effect of systematically deleting
increasing amounts off the beginning of a curve. While this will produce limited effects
on the algorithms that operate on local windows, others based on sequential or recursive
subdivision are potentially sensitive to shifts in the endpoints. For a fixed threshold (set at
2) the plots of breakpoints for the Douglas & Peucker [4] and Ramer [14] algorithms are
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Figure 6: Breakpoint stability under progressive curve deletion

shown (figure 6). All points to the left of the diagonal have been deleted. In this case os-
cillation or shift is clearly undesirable, and therefore would be an appropriate measure of
endpoint stability. At each level of deletiond the shiftsdb at each breakpointb is measured.
Let the length of the curve after deletion beld, the number of breakpoints at this level be
nd, and the number of levels of deletion bem. Then we calculate the shift measure as

S =

 
1�

1

m

X
d

X
b

sdb
ndld

!
� 100:

Since Douglas & Peucker’s algorithm shows several large shifts it only scores 89.85 while
Ramer’s scores 99.75 as only small shifts occurred. Note that the shift measure does not
take into account the frequent change in numbers of breakpoints that Ramer’s algorithm
displays with increasing levels of deletion.

3 Experiments

We apply the measures to 16 algorithms from the literature as well as five optimal algo-
rithms [16]; all incorporate a parameter that effectively controls scale. The algorithms
form a good cross section, ranging over 25 years and based on a diversity of methods (see
table 1). By their very definition some methods (e.g. Ramer) are guaranteed to avoid any
breakpoint shift. At the opposite end of the spectrum the simple method of subdividing
the curve into evenly sized segments inevitably displays continual breakpoint shift while
Deveau’s algorithm exhibits severe systematic drift. The plots of number of lines against
parameter also show a wide range of behaviour, and table 2 details their monotonicity
values. Since the input parameter for some algorithms corresponds to the desired number
of output lines then their graphs are linear (i.e. the optimal and “regular” algorithms).
Other algorithms also produce perfectly monotonic plots (Deveau, Douglas & Peucker,
and Ramer) although the correspondence between input parameter and number of lines is
non-linear. The other extreme is shown by Phillips & Rosenfeld’s algorithm which shows
strong fluctuations. Fuet al.and Melen & Ozanian’s algorithms also appear unstable, but
to a lesser degree.

In a similar manner the monotonicity of ISE against parameter is measured and given
in table 2. This time only the optimal ISE minimising algorithm maintains continuous
reduction in ISE with continuous change of input parameter. In part this is because
many of the other algorithms use the maximum deviation as an error criterion rather than
ISE. Nonetheless, many algorithms appear nearly monotonic (e.g. Deveau, Douglas &
Peucker, Hu & Yan, and Ramer) while others show extreme fluctuations (e.g. Phillips &
Rosenfeld, Deguchi & Aoki, and Melen & Ozanian).
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Authors Method

Cheng & Hsu [1] curvature approximation
Deguchi & Aoki [2] regularisation
Deveau [3] tolerance band
Douglas & Peucker [4] sequential subdivision
Inestaet al. [8] symmetry
Ji & Haralick [9] statistical hypothesis test
Fu et al. [6] curvature approximation
Hu & Yan [7] local pattern rewrite rules and curvature
Melen & Ozanian [11] curvature and first derivative of curvature
Pei & Horng [12] spatial shift from smoothing
Phillips & Rosenfeld [13] arc/chord distances
Ramer [14] recursive subdivision
regular subdivision into evenly sized segments
Rosenfeld & Johnston [15] curvature approximation
Wu & Levine [17] simulation of electric charge density distribution
Zhanget al. [18] Bayes theory

E1 optimal minimumE1 error
E2 optimal minimumE2 (ISE) error
E1 optimal minimumE1 (maximum deviation) error
EL optimal minimum length
E� optimal minimum difference in orientation

Table 1: Polygonal approximation methods tested

The consistency of errors plotted against numbers of lines is given in table 2. The
optimal algorithms and others such as Douglas & Peucker, Hu & Yan, and the simple
algorithm which show no or little vertical doubling of points achieve good (i.e. low)
scores. On the other hand, Cheng & Hsu, Deguchi & Aoki, Rosenfeld & Johnston, and
others with considerable vertical duplication receive poor (large) scores.

Finally, many plots of merit against parameter show substantial variations. We can see
for example from the mean and standard deviations in table 3 thatE1 has a good score
for a range of parameter values while the Rosenfeld & Johnston algorithm has a mediocre
score with considerable standard deviation, whereas Pei & Horng receive a poorer mean
score but are more consistent over different parameter values.

These same measures were calculated for 21 test curves by running them over a range
of parameter settings – in most cases[4 � 45]. The mean and standard deviations cal-
culated over the full set are given in table 3. Of course, since all the algorithms are
effectively being compared against theE2 metric for all algorithms of performance then
only the optimalE2 algorithm can receive across the board top marks. Not surprisingly,
the similarE1 algorithm does well. Several other algorithms such as Douglas & Peucker,
possibly Hu & Yan, and especially Ramer behave well most of the time although their
merit scores lag the optimalE2 results considerably at times. It should be noted that all
the algorithms exhibit large variations in merit over varying parameter values and data
sets.
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Method M(Line) M(ISE) Consistency Merit
� �

Cheng & Hsu 94 49 5.88 44 19.4
Deguchi & Aoki 20 35 4.09 28.9 17.05
Deveau 100 96 4.46 44 9.5
Douglas & Peucker 100 99 0.00 78 9.8
Fu et al. 20 8 2.83 63 18.0
Inestaet al. 53 79 0.38 30.1 14.7
Hu & Yan 91 96 0.00 70 11.7
Ji & Haralick 87 58 1.64 25 8.3
Meloza & Ozanian 38 25 4.53 48 28.3
Pei & Horng 71 81 1.10 34 5.4
Phillips & Rosenfeld 4 1 4.57 27 13.4
Ramer 100 95 0.00 80 15.4
regular 100 50 0.00 33 14.9
Rosenfeld & Johnston 58 53 5.62 47 16.5
Wu & Levine 69 54 2.27 29 17.6
Zhanget al. 100 71 2.86 49 7.2

optimalE1 100 81 0.00 87 8.7
optimalE2 100 100 0.00 100 0.0
optimalE1 100 98 0.00 83 10.6
optimalEL 100 87 0.00 82 11.8
optimalE� 100 66 0.00 39 19.1

Table 2: Assessment of various algorithms applied to Teh and Chin’s test curve

4 Discussion

We have described several quantitative criteria for measuring the stability of the perfor-
mance of polygonal approximation algorithms. They are simple to compute and require
no parameters except the range of tested algorithm parameters. In most cases this will be
determined by the algorithms themselves. For example, for Ramer’s algorithm the win-
dow within which the straight line is fitted must be greater than two to allow for some
deviation from that line, and cannot be larger than the number of points in the curve. The
criteria implemented are not exhaustive. Several others were discussed with reference
to the scale-space plots. However, in these cases it was difficult to consistently interpret
them.

Although the testing was extensive (over 24000 program runs were necessary) it is still
incomplete on several counts. First, small test curves (100–200 points) were used to speed
up the computation. This restricted the possible window sizes which leads to insufficient
data for some algorithms to perform reliable statistical analysis. Second, some of the
(standard) synthetic test curves have few or no perturbations which does not reflect the
nature of many realistic image curves. Therefore additional testing is required to assess
the stability and accuracy of the algorithms under increasing levels of noise. Third, only
the scale parameter was varied. For those algorithms with multiple parameters these had
to remain fixed for practical reasons.

Finally, the merit scores were calculated with respect toE2 error. However, there is
no a priori guarantee that this is the most appropriate error model – it just happens to
be commonly used in practice. The other metrics tested with the optimal algorithm also
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Method M(Line) M(ISE) Consistency Merit
� � � � � � � �

Cheng & Hsu 72 13.2 28 15.5 6.1 2.64 16 11.3
Deguchi & Aoki 17 10.8 18.5 23.0 6.5 5.37 32 17.15
Deveau 100 0.0 89 13.4 2.3 0.62 41 24.2
Douglas & Peucker 99 2.8 98 5.6 0.1 0.27 64 12.4
Fu et al. 8 19.5 1 19.7 2.6 0.80 51 17.3
Hu & Yan 86 13.9 89 11.9 0.0 0.00 56 13.4
Inestaet al. 4 53.3 0 48.8 1.6 0.60 37 13.3
Ji & Haralick 81 25.1 68 18.0 1.7 1.32 22 13.9
Meloza & Ozanian 83 13.7 61 18.4 1.9 1.27 58 20.0
Pei & Horng 73 15.7 74 12.9 2.1 1.43 40 15.2
Phillips & Rosenfeld 29 27.1 26 17.8 5.5 1.81 30 12.6
Ramer 100 0.0 100 1.1 0.0 0.00 74 19.7
regular 100 0.0 66 8.8 0.0 0.00 27 9.0
Rosenfeld & Johnston 85 13.4 71 9.1 2.6 1.27 52 25.0
Wu & Levine 59 31.0 52 19.6 2.1 0.95 32 15.6
Zhanget al. 96 5.6 60 13.9 2.3 1.07 36 14.2

optimalE1 100 0.0 97 2.8 0.0 0.00 88 9.0
optimalE2 100 0.0 100 0.0 0.0 0.00 100 0.0
optimalE1 100 0.0 95 3.1 0.0 0.00 77 10.4
optimalEL 100 0.0 80 14.2 0.0 0.00 63 13.6
optimalE� 100 0.0 77 16.4 0.0 0.00 40 18.9

Table 3: Assessment of various algorithms applied to 21 test curves

generally appear visually reasonable, even though they only get a moderate mean merit
rating. In fact some psychophysical evidence points toE1 as an appropriate measure [5]
while specific tasks can be shown to favour particular choices of error [16].
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