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Abstract

We describe a Bayesian architecture to estimate the position and pose
of a 3D object. The system starts with knowledge of the 3D structure
of the object and the prior probability distribution of its position and
orientation in the workspace. This information is used to guide the
search for focus features in the image, and the information recovered
from the image processing is used to refine the estimates of the x-y
position and pose of the object. The results of intermediate stages of
processing is propagated using a Bayesian methodology. After iteration
around the network, the peaks of the final probability distributions
are used to estimate the position and pose, and the widths of the
distributions provide a measure of confidence.

The results of the study suggest that grey-level image processing
algorithms and a simple 3D model, embedded in a Bayesian statistical
reasoning architecture can provide a highly effective, albeit specialised
object localisation system.
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1 Introduction

This paper i1s to establish a stochastic framework for object localisation, as a
part of an ongoing research project “model-driven stereo vision under camera
geometry” [12].

The starting point for the research reported here is the work of The Rochester
group [10] who exploited a Bayesian reasoning paradigm to build an architecture
for the control and deployment of a suite of vision processing algorithms. They
chose as their original task domain a table setting reasoning problem. The sys-
tem answered questions concerning whether the number of places, whether the
meal was breakfast or dinner ete. Later work [1] extended the system to reason
about the scenes containing moving objects, model trajectories and plan appropri-
ate monitoring strategies. The system embodied knowledge of the task domain,
the vision algorithms, and their situation dependent appropriateness and costs
of deployment. A foveating strategy controlled by the emerging interpretation of
the scene determined the size and position of the image region processed and the
algorithms utilised therein.
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Our research is to exploit and later, extend the general principles demonstrated
by Brown and colleagues in a different task domain. The application domain we
have chosen is the 3D pose identification and object verification of an industrial
part under conditions of variable camera geometry using a foveating 4 dof stereo
camera head. Previous work used model driven expectations to detect obstacles
on the ground plane under variable camera geometry [11].

A long term aim of the project is to develop stereo algorithms in which ge-
ometry obtained from a previous fixations [5], head positions and model driven
expectations is taken into a different viewing sitations and used as contraints in
the solution of the stereo fusion correspondence problem. As a step towards this
aim we have begun to develop a Baseyian based task control architecture to deploy
low level vision algorithms containing as much as possible (or needed) information
specific to the ‘to be recognised object’, the workspace, and its illumination.

2 The Task

The task is to find the x and y position and rotational pose of a Toyota shaft
assembly, as shown in Figure 1. Three focus features corresponding to bosses of
the object labeled by crosses in the figure are chosen. We have available a precise
3D geometrical model of the object. The stereo camera rig has been calibrated, and
we have an approximate estimate of the object’s position and pose which we can
vary as part of the experimental manipulation. The shaft assembly is constrained
to have only three degrees of freedom. Its position can vary on a horizontal plane,
and the position of this plane is known in the camera coodinates. The object
can be rotated around the axis normal to this plane, The task is to estimate the
translation along the x and y axes and the rotation around the z axis.

3 Image Grey Level Blob Detection

We refer to the process of localising the boss focus features using the Forstner
operator [4] as a blob detection. The operator is designed to identify potential
circular symmetrical features withinin an region of interest. The operator treats
pixels within the region individually. It uses the “slope element”, i.e., the straight
line going through the pixel p; and the direction of the gradient 7g;. The idea
is that the circular symmetrical center b, if exists, minimizes the weighted sum of
the distance n; from the slope emements. A Forstner blob candidate b is given by

D Wi) b= (3 Wi-pi), (1)
where the weight matrix

sin? 6; —cos f; sin 6;
~ (2)

—cos f; sin 6; cos? f;

Wi =l v I (

Obviously, the blob centre estimate b is the weighted centre of gravity of all
points p;. This operator can also be interpreted as a straight-line fit in Hough
space. Dots in Figure 1 shows detected blobs for the observed object.



British Machine Vision Conference

This operator also provides the confidence contours (usually an ellipse) of the
position of the blob. We assume that the Forstner blob operator is an unbiased
estimator, and we take r?(v) as the variance. Then, assuming a Gaussian distribu-
tion, we can build the probability distribution p(v|b) of the blob centre coordinates
v as follows:

dist? (b, v)

plol8) = s exp(= g/ g

where dist 1s the distance function and N 1s the normalisation factor.
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Figure 2: Deformable template for a

Figure 1: detected blob
lgure clected blobs tracked feature

4 Deformable Template

The performance of focus feature localisation using the blob operator will de-
teriorate quickly if the uncertainty of the initial estimation becomes large. For
an instance, given as the initial estimate of the object pose (N(50mm,50mm),
N(=50mm, 50mm), N(—30°,30°))T when the correct pose is (0mm,0mm,0°),
the localisation proved unsuccessful. This is due to the increase in number of the
plausible but incorrect ‘feature” matches.

To address this problem we combine the edge information with the blob de-
tection using a deformable template approach [16]. This can be regarded as con-
volving an image with a flexible mask corresponding to the feature to be localised.
The template consists of a blob and two conics, corresponding to the edges of the
boss feature. The low level image processing now involves both the Forstner blob
operator and the canny edge operator [2]. Note that the both operators share the
same gradient detection stage. A further stage of ellipse fitting [8] are undertaken
to give elliptical features.

The template geometry in the image plane is shown in Figure 2. The template is
represented by twelve parameters, i.e., (b, s1,myq, n1, 82, ma, ns). (mq,n1) models
(the size, shape, orientation of) an elliptical edge around a circular feature, where
mj is the major axis and n; is the minor radius. Similarly (mz, na2) gives another
ellipse. sg defines the shift between the centres of those two edges. b represents
the position of the blob as determined by the Forstner operator, and sy is the
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difference in the position estimated by the ellipse fitting and the blob operator.
The template 1s deformable since it is defined in image space and varies with the
position and pose of the object.

The measure of the goodness of the match of an candidate elliptical edge (m, )
to the model (m, n) is defined as follows:

n n m m ||2

[l [fm]

Here k1 and ko are weights. The first item of above equation relates to the size
difference, the second to the shape and the third to the orientation.
Now we are able to define the measure as an energy function as follows

fe=llm—m[]? +ki - ( )7+ ko | NG

|l [l

E=ay-fa+as footas || s1—sz2]|®+as || s1—82]* +as || b— b 1>, (5)

where f.1 is with respect to the first elliptical edge (m1,n1), and feo to the second
one. The blob and edge features within the search area that minimize E are chosen
as candidate features.

Using the Gibbs distribution [6], we can have the probability of the 2D tem-
plate ¢ of a focus feature f:

B
p(t) = exp(=5)/N, (6)
where T 1s the temperature, which can simply set to 1 if proper factors a;,¢ =
1,2,...,5 have been chosen, and N is the normalization factor. We simply use
this p(f) to replace p(fj|s) in equation ( 10) to propagate the information over
the Bayes net.

5 A Bayesian Net

We use a causal Bayes net [7] to represent the knowledge about the model. Besides
Bayes net, probalistic knowledge representation and Dempster-Shafer can be two
alternatives. Figure 3 shows the causal Bayes net for this task. In this net, the node
S represents the probability distribution of the position and pose of the object in

3D space, while Fy, Fy, ..., F, respresent the distributions of the features in image
coordinates. The object position and pose node S carries the prior distribution
N (5o, 00).

Denote {f;]i = 1,2,...,n} to the object’s feature set to be localised. At first
we treat each feature individually. With the initial estimation N($q, d¢) for the
object and its 3D geometrical features, the probability distribution of each feature
fi over the 3D world space, p,(fi),w C R3, can be easily computed. This proba-
bility distribution is then projected into the 2D image space using known camera
geometry. The distribution map p(f;) of feature f; over the image is obtained.

Using a given confidence level (0.05 say), we calculate the search bound for
the feature f;. The search bound defines an area such that the probability of the
feature lying outside this area is no more that the given confidence level. Within
this area, we apply the Forstner blob operator to find candidate blobs. Suppose
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blobs {b;;]7 = 1,2, ..., m} are found, i.e., we have the distributions p(v|b;;). Under
the mutual independence assumption, the joint distributions are given by

p(vlbij) = p(fi) - p(v]bij). (7)

By incorporating the 2D template probability (6) into the above equation. We
have

p(v) = p(fi) - p(vlbij) - p(ti). (8)
We make the assumption that for feature f;, its corresponding template is that

which maximises (8). After we have located the template of the feature f;, we
then be able to update its probability map in the image. so that

p(filv) — p(Jv). (9)

We now use this information (the image location of f;) to update the knowledge
about the model. Let p(s) (where s = ({,t,,7.)7) denote the distribution of the
position and pose of the object. Using Bayes rule, we have

p(fils) - p(s)
p(fi)
p(s) is the prior distribution N(8g, &), and p(f;) is the normalisation factor, with

p(fi) = fsCR3 p(fi|s)p(s)ds. Using the estimated transformation Tywo and the
known T;,, for each position and pose s, we are able to establish the projection

p(slfi) = (10)

geometry from object reference to image coordinate:

v="T Two 5. (11)

Then,
p(fils) = p(filv). (12)

Having updated the knowledge about the object position and pose, we propa-
gate the evidence to the other nodes of the net. Again, using Bayes rule,

1oy = PGLE) - p(fs)
p(f]| ) p(v) .

(13)
Here p(f;), the prior distribution, can be computed from equations ( 8) and ( 9).
p(v) is a normalisation factor, with p(v) = fchI p(s|f;) - p(f;)dv, where Ry refers
to the image space.

To compute the probability p(s|f;), we enforce the constraints on possible
object motions. eg. object position varies only on the x-y plane. We then are
able to define a 3D (2 dimensions for translations along x and y axes, and one for
rotation around z axis) trajectory ¢ repesenting the refinement of the estimates of
the object‘s position and pose s.

This trajectory is represented in a form of parameter space, as illustrated in
Figure 4. Here, again subscript w is refered to the world reference and o to the
object reference. Feature f; in the object reference, i.e., || O, f; || and ¢, is given by



British Machine Vision Conference

the 3D geometrical model of the object. For a given feature f; in world reference,
e, || Ouwf; || and «, we have

r=—a-+60—¢
2a =|| Oul; || -cosa— || Ouf; | -cos(a +0) (14)
Yo =|| Owfi || -sina— || O, f; || -sin(a + 6).

This gives the trajectory ¢, with 8 as the trajectory parameter changing from 0

A A Yo fi
- SN(So, 0y,

Xo

Yo ot

////',KOOZ(XW in)

0W

Figure 4: Trajectory of the object pose

Fi 3. A 1B t
rgure causal bayes he in the world reference

to 2w. Therefore,
p(s|f;) = /p(s)ds. (15)
t

It should be noted that these constraints on the dof of the object are specific to
our task domain, though whatever constraints are used, the equation ( 15) holds.

6 Implementation

The preceding algorithm was implemented using TINA (ATVRU’s own vision sys-
tem) [9]. A stereo camera rig mounted on the autonomous vehicle COMODE
[15] was used to grab images of the object.

To calculate the probability distribution of the object position and pose, we
digitalize the 3D space (2D for x and y translations, and 1D for z rotation) with
sampling interval of ¢;/20 and centred at the initial estimate, where ¢; is the
standard deviation of the prior estimate. We also set the limits of sampling at
+30;. So for each dimension there are [30; — (—=30;)]/(0:/20) = 120 sampling
points. Thus the probability distribution of the object position and pose estimate
is represented as a 120 x 120 x 120 volume.

The probability distribution of the location of a feature is computed at every
pixel over the image plane. This means 512 x 512 probability distribution “image”
for each feature of the total 3 focus features.

Once a probability distribution of a 2D template is updated, the search bound,
or the confindence contour at a given level, is to be computed. Starting from the
peak of the distribution, the algorithm iteratively expands the region until the
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integration of the probability distribution reaches the given confidence level. The
localisation of a feature will then only be performed within its search bound.

7 Experiment

We ‘tracked’ the positions of the three focus features of the object, using the distri-
butions not exceeding (N (50mm,50mm), N(—50mm, 50mm), N(—30°,30°))7 as
an 1nitial estimate of the object position and pose. We choose the world reference
coordinate to be the same as the object reference, thus the correct position and
pose is (0,0, 0°)7.

Repeating experiments with different initial estimates and with the object at
different poses, we found that after two iterations (or passes) a stable (and rather
precise as well) estimate of the object position and pose was acquired. After
completion of the processing the estimated position and pose of the object is
within (£1.0,41.0,41.5°)7. This error is within a single step of the quantisation
of the space used in the computation of the distributions.

Given a pose estimate of the object, we can directly draw the 2D template
of the focus features under calibrated camera geometry. Figure 5 and Figure 6
shows templates before and after object localisation in two experiments. From
both figures we can see the 2D templates almost perfectly fit with the image
after localisation. This indicate the position and pose of the object is precisely
recovered. Figure 7 gives a confidence boundary at level of 0.1 for the final
estimate the object position and pose.

Figure 5: Templates before and after lo-  Figure 6: Templates before and after
calisation. Those templates with cross localisation with the object at another
at center are computed after localisa- pose. Those templates with cross at
tion center are computed after localisation

Figure 8 shows the evolution of the probability distribution p(fo|v) (so for focus
featute #0) during processing. Figure 8 (a) is the prior probability distribution
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of the feature. Figure 8 (b) is the updated probability distribution after locating
the feature. Figure 8 (c) is the probability distribution after data from all those
three features has been incorporated i.e., after the first pass. Figure 8 (d) is the
probability distribution after re-localisation of this feature in the second pass.

Rotation around z (deg)

4 -10 Translation along y (mm)

Translation along x (mm)

Figure 7: Confidence boundary for the final pose estimate

The shape variations and the centre shifts between Figure 8 (a), (b) and (c¢), and
the slight difference between Figure 8 (¢) and (d) indicate that

e the effect of including location information from other features is obvious;

e the major effect of the second pass is to reduce the uncertainty of, rather
than the value of the position estimate.

8 Summary and Conclusions

In this paper we have presented preliminary results demonstrating the use of a
stochastic framework to solve a structured and constrained task. The overall
performance of the system seems most encouraging.

Starting from prior knowledge about the 3D structure of the object and its
likely position in the workspace represented as probability distributions, data from
preliminary observations are used to update the predicted locations of the other
focus features. These search areas are then processed and the the recovered in-
formation used to update the position and size of subsequent search areas. The
information is propagated using the Bayesian methodolgy.

The work is still in the early stage of development. For example it is not pos-
sible to claim any complexity of the task control structure, the current control
architecture being simple and ballistic (though possible developments are obvi-
ous). For example there is no reasoning concerning the deployment of the vision
algorithms; if the system is searching for focus feature #2 then it deploys the
vision processing appropriate to verify ‘flexible template of the model feature #2’.

In this respect the experiments may be regarded as the first steps towards the
development of an architecture in which information appropriate to the particular
task domain can be compiled down into the earliest stages of vision processing.
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Figure 8: Evolution of probability maps of position of the focus feature #0

Thus in conclusion, if one of the holy grails of vision science is the development
of the general vision system [13, 14], our particular version of the search is for
a system architecture in which generality is provided by a Bayesian network (or
equivalent probabilistic reasoning system); in which communication is by propa-
gation of revised estimates of probability, and where local control is exercised by
the deployment of collections of vision algorithms parametrised by the constraints
of the particular component of the task for which they are uniquely specialised.

Who knows, it may work!

9 Acknowledgement

Y. Shao is sponsored by Sino-British Friendship Scholarship Scheme. The authors
feel indebted to all members of AIVRU at The University of Sheffield.

References

[1] C. Brown, D. Coombs, and J. Soong, Real-tile smooth pursuit tracking, Active



British Machine Vision Conference

vision, ed. A. Blake a,d A. Yuille, MIT, 1992

[2] J. Canny, A computational approach to edge detection, IEFE Trans. PAMI,
8(6), 1988, pp.679-698

[3] O. D. Faugeras, Q. T. Luong and S. J. Maybank, Camera self-calibration—
theory and experiments, Lecture notes in computer science, 588, 1992, pp.321-

334

[4] W. Forstner, Image matching, Robol and computer vision, vol. 2, ed. R. M.
Maralick and L. G. Shapiro, Addison-Wesley, 1993

[6] A. Francisco, Active structure acquisition by continuous fixation movements,
Dissertation, Computational Vision and Active Perception Laboratory, Royal
Institute of Technology, Sweden, June 1994

[6] G. Parisi, Statistical Field Theory, Addison-Wesley

[7] J. Pearl, Probabilistic reasoning in intelligent systems: netlworks of plausible
wnference, Morgan Kaufmann, 1988

[8] J. Porrill, Fitting ellipses and predicting confidence envelopes using a bias
corrected Kalman filter, Image and vision computing, 8(1), 1990, pp.37-41

[9] J. Porrill, S; B. Pollard, T. P. Pridmore, and et al, TINA: The Sheffield ATVRU
vision system, Proc. of 10th Int’l jownt conf. on artificial intelligence, 2, 1987,
pp.1138-1144

[10] R. D. Rimey, Control of selective perception using Bayes nets and decision-
theory, Tech. report TR-468, Dept. of Computer Science, University of
Rochester, Dec. 1993

[11] Y. Shao, S. D. Hippsley-Cox and J. E. W. Mayhew, Ground planeobstacle
detection of stereo vision under variable camera geometry using nueral nets,

Proc. of BMV(C’95, 2, Birmingham, Sept. 1995, pp.217-226

[12] Y. Shao, J. E. W. Mayhew, Object localisation using model-driv en vision,
AIVRU Memo-106, University of Sheffield, March 1996

[13] M. J. Tarr and M. J. Black, A computational and evolutionary perspective
on the role of representation in vision, CVGIP - image understanding, 60(1),

1994, pp65-73

[14] M. J. Tarr and M. J. Black, Reconstruction and purpose—response, CVGIP -
image understanding, 60(1), 1994, pp.113-118

[15] N. A. Thacker and J. E. W. Mayhew, Optimal combination of stereo camera
calibration from arbitrary stereo images, Image and vision computing, 9(1),

1991, pp.27-32

[16] A. Yuille and P. Hallinam, Deformable templates, Active vision, ed. A. Blake
and A. Yuille, MIT, 1992



