
Knowledge-Based Anisotropic Di�usion ofVector-Valued 4-Dimensional Cardiac MR ImagesGerardo I. S�anchez{Ortiz, Daniel Rueckert and Peter BurgerDepartment of Computing, Imperial College, London SW7 2BZ.�Abstract. We present a general formulation for a new knowledge-based approach toanisotropic di�usion of multi-feature and multi-dimensional images, with an illustrative ap-plication to cardiac MRI. We incorporate all available information through a more completede�nition of the conductance function which di�ers from previous approaches in two aspects.First, we model the conductance as an explicit function of the position and not only of thedi�erential geometry of the image data. Inherent properties of the system (such as geo-metrical features or non-homogeneous data sampling) can therefore be taken into accountby allowing the conductance values to depend on the location in the spatial and tempo-ral coordinate space. Secondly, by de�ning the conductance as a second rank tensor, thenon-homogeneous di�usion equation gains a truly anisotropic character which is essential toemulate and handle certain aspects of complex data systems. We demonstrate the e�ciencyof the proposed framework using density and velocity encoded cine volumetric MR imagesof the left ventricle. In this example we incorporate into the di�usion process spatial andtemporal knowledge about the shape and dynamics of the heart. The method presented issuitable for image enhancement and also for segmentation. We compare our results to thoseobtained with other anisotropic di�usion methods.1 IntroductionImage processing and computer vision have traditionally dealt with problems like imagesegmentation (i.e.dividing an image into a certain number of meaningful regions) in caseswhere the data can be expressed as a single- or vector-valued image function de�ned on an-dimensional image domain. However, in almost any image acquisition method the originalsignal which is to be measured is a�ected by noise, blurring, discretisation errors, non-linearsensor responses or any other type of misregistration that degrades the data quality.Many semantic interpretations, like edges in an image, rely on the extraction of geometricfeatures, e.g. di�erential invariants (chapter 1 in [1]). The problem of determining at whichscales these image features should be measured has emerged as one of the central problems.In recent years many di�erent approaches for image descriptions based on geometry-drivendi�usion processes have been developed [1]. The concept of geometry-driven di�usion hasits roots in the idea of analysing images at varying levels of resolution and was originaldeveloped by Koenderink [2] and Witkin [3]. Koenderink has pointed out that this blurringcan be expressed in terms of the heat conduction or di�usion equation:@ I(x; y)@� = r� c rI(x; y); (1)where r is the gradient operator and r� is the divergence one. If the conductance term c isa constant then the di�usion process is called isotropic. In this case the Gaussian functionG is the solution to the di�usion equation and any di�used image can be obtained directly�E-Mail: giso@doc.ic.ac.uk URL: http://www-asds.doc.ic.ac.uk/~giso
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by a spatial convolution with the Gaussian function, i.e., L(x; y; �) = I(x; y) 
 G(x; y; �).This leads to some disadvantages: First, the �ltering is linked with loss of informationabout image features such as objects and their boundaries. Secondly, the blurring leads toa degradation of the localization of the surviving image features.To avoid these problems, Perona and Malik [4] have proposed a space-variant blurringwhich leads to the anisotropic di�usion equation@ I(x; y)@� = r� ( c (x; y) rI(x; y) ) ; (2)where the conductance is a monotonically decreasing function of the magnitude of the gra-dient of the intensity: c = g(krIk) = 11 + (krIkk )2 : (3)A conductance function de�ned in this manner weakens the di�usion process for values ofthe gradient of the intensity larger than a parameter k. As a consequence the conductancefunction allows di�usion at edges with low gradient values (which are presumed to be spu-rious edges) and prevents di�usion at edges with high gradient values (which are presumedto be signi�cant edges). This method has been proved useful and work has been done toextend it in many areas including to vector-valued images (chapter 4 in [1]).However, we notice that previous approaches rely only on the di�erential structure ofthe data while ignoring the particular properties of the system. As a consequence results arestill poor in regions of the images with low contrast and low signal-to-noise ratio, where thedi�erential characteristics of data do not provide the required information. Moreover, mostworks oversimplify the conductance function of the di�usion process, ignore the direction ofthe gradient, and oversee important system characteristics such as non-homogeneous datasampling.In this article we propose a second rank tensor conductance function with an explicitdependence on the space coordinates and the data function. This tensor modi�es the natureof the equations making them heterogeneous and anisotropic from the starting point, not asa consequence of the discretisation scheme as is the case of previous works. Furthermore,we develop a general framework to incorporate a priori knowledge of the system in multi-feature and multi-dimensional images. We illustrate this approach with an application tocine volumetric and velocity encoded magnetic resonance images of the heart, where noisereduction in data and pre-segmentation of the myocardium is commonly required.2 4D Multi-Feature MRI DataElectrocardiographically synchronized cine Magnetic Resonance Imaging (MRI) techniquescan be used to generate a sequence of tissue density (�) tomographic images of the heart.The sequence of images correspond to di�erent times distributed during a cardiac cycle,covering most phases of a heartbeat. In addition to these sequences of 2-dimensional images(with which we align the x-y plane of the cartesian coordinates reference system), multi-sliceimaging can provide contiguous images parallel to the x-y plane, at di�erent heights in athird spatial coordinate-axis (z). A common procedure for evaluating left ventricle (LV)performance is to produce data such that x and y lie on the short-axis plane of the LV, andz goes on the direction of the LV long-axis (as will be seen below in �gure 1).For each of the density images, velocity encoded data of the same anatomic plane of theventricle is produced using a phase-sensitive MRI technique. The velocity data is rendered



as 3 images, Vx, Vy and Vz, that correspond to the cartesian components of the velocityvector �eld V.We describe the data used as the vector function F = F(p) = (F1(p); ::: Fn(p); ::: FN (p) )where F : <M ! <N , Fn : <M ! <, p = (p1; :::pm; :::pM ), and pm 2 < (i.e.p 2 <M ). In ourcase the space-time coordinates are x; y; z; t (M = 4), and the feature images are �; Vx; Vy ; Vz(N = 4). Therefore the data functions take the form:F(p) = ( F�(p); FVx(p); FVy (p); FVz (p) ) (4)where p = (x; y; z; t). The method described below treats the space of coordinates as non-homogeneous and takes into consideration the di�erent scales, physical units and samplingrates of the data in each of the coordinate axes. With this general treatment of the coordinatesystem, we deal with t as a fourth \spatial" coordinate and allow the cine sequence to providewith extra information for the di�usion process.3 Vector-Valued Multi-Dimensional AnisotropicDi�usionIn the case of this vector function of several variables that represents our 4 dimensionalmulti-feature data, the equation for anisotropic di�usion is@F(p)@� = r� ( C (p;F) rF(p) ) ; (5)i.e.the set of the 4 coupled equations:� @ Fn(p)@� = r� ( C (p;F)rFn(p) ) ; for all n 2 f �; Vx; Vy; Vz g: (6)We must distinguish between the variables t and � . While the former is the time duringa heartbeat and one of the coordinates in our 4D set of data, the latter refers to the timeduring the di�usion process (in fact, in the case of isotropic di�usion, the total di�usion time�total is proportional to �2 where � is the standard deviation of the Gaussian smoothingkernel [5]).3.1 Conductance FunctionThe coupling term for these equations is the inhomogeneous and anisotropic conductancefunction matrix de�ned by the productC (p;F) = G(F)W(p): (7)The conductance function that we introduce here di�ers from previous de�nitions in twoaspects. First, in contrast to other approaches [4, 6, 7],this conductance function depends notonly on the local behaviour of the data function F which is subject to noise, but also on theparticular characteristics of the system at every location p of the 4-dimensional coordinatespace. The two factors that regulate the conductance | and therefore the di�usion | are,on the one hand, the function matrixG(F(p)) that uses information obtained from the localbehaviour of the data values, and on the other hand, the weighting function matrix W(p)obtained from a priori knowledge of the geometry and dynamics of the system from whichthe data is generated, but independent of the data itself.



The second di�erence is that we de�ne the conductance function as a second rank ten-sor, not as the scalar function normally used, therefore allowing real heterogeneous andanisotropic di�usion, result of the properties of the conductance function and not only ofthe data gradient of equation 5 1. C, W and G, which expressed in matrix notation takethe form Cij ;Wij ; Gij : <4 ! < where i; j 2 fx; y; z; tg, permit the conductance to vary notonly accordingly to the location in the space (heterogeneously) but also depending on theorientation (anisotropically).Although in this work we only examine the simple case in which the matrices are diagonal(the elements will be computed below), a conductance function de�ned in this mannerpermits the di�usion process to be biased di�erently in every direction and in every positionin space. G accounts for the characteristics of the data (as we will see below G could be anoise or boundary estimator), and W accounts for the intrinsic properties of the space (forexample, a di�usion process in which an electrical or gravitational �eld produces a force that:a) varies with the direction | for an anisotropic system, and b) varies with the distributionof mass or electrical charges in the material | for an heterogenous medium).3.2 Data Based Weighting: G(F)The framework used for describing the function matrix G is suitable for using elaboratednoise or edge estimators (for instance, a function that depends on the local direction of thegradient [8]). However, in this work we use a 4D multi-featured function analogous to thesimple and widely used function g(krIk) on equation 3. This monotonically decreasingscalar function of the magnitude of the gradient of I (the image intensity), has the desirede�ect of blurring small discontinuities while sharpening edges when k is chosen adequately.The values of km (one for each coordinate axis) are computed using Canny's noise estimator[9]: 90% of the value of the integral of the histogram of the gradient's magnitude throughoutthe data. The computation is made for every iteration of the di�usion process (i.e. km varieswith �) and using the de�nition of the gradient's magnitude shown below. Thus, the elementsof the diagonal matrix G are de�ned as follows:Gmm = gm(krFk�m) = 11 + �krFk�mkm �2 and (8)krFk�m =  Xn (sn Jmn)2! 12 =  Xn �sn @Fn@pm�2! 12 ; (9)for all m 2 fx; y; z; tg and n 2 f�; Vx; Vy ; Vzg. Since the data function that we use is avector valued function we must de�ne a norm for the Jacobian matrix (J) of F instead ofusing the magnitude of the gradient as a dissimilarity measure. In this work we use thede�nition shown above as an alternative to the formerly proposed Euclidean norm of J [10].Such dissimilarity measure exploits the information provided by the di�erent data featuresFn while preventing homogeneous regions in some directions to shadow steep gradients inothers. The scaling constants sn are used for standarising the units of the di�erent datafeatures. It is worth recalling that the matrix G could be non-diagonal and therefore allowcross inuence between coordinate axes. The next section describes how a weighting functionfor a speci�c problem can be chosen based on a priori knowledge of the system.1In works like that of Perona and Malik [4] the conductance is de�ned as an heterogeneous function overthe image space, while the anisotropic character comes only as a consequence of their discretisation scheme.
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xFigure 1: (a) Orientation of a barrel shaped Left Ventricle (LV) of the heart with respect tothe coordinate system. (b) Cross section of the LV and polar coordinates on the x-y plane.(c) x-z plane view of a pixel without a myocardium neighbour in the z direction.3.3 Knowledge-Based Weighting: W(p)Information about the nature of the system and the data generation process can be veryvaluable when processing and analysing the data. The system's geometry and dynamics, thesources of noise in the data, and in general any kind of a priori knowledge can improve theresults of tasks such as image segmentation or noise reduction. Using this information has aclear advantage over making statistical measurements of the regional properties of the data:the former is noise independent. However, one must �nd a robust method to incorporate\fresh" information from the data and thus avoid over constraining the behaviour of thesystem and overseeing any unexpected but real characteristics of it.A compromise has to be made between the extent (and detail) of this information andthe portability of knowledge-based methods to other systems with di�erent characteristics.Although the use of speci�c knowledge about a system restricts the application of the methodin other environments, a well structured formulation simpli�es the incorporation of theparticular characteristics of di�erent systems to the algorithm already in use.In the following pages we generate a weight function matrix W(p) that reects thecharacteristics of a given position within our, per se, anisotropic space.Shape informationIn the series of LV short-axis images described above, the LV muscle has a strong cylindricalsymmetry (�g. 1.a). The area of interest for the segmentation, the myocardium, appears inthe x-y image as a ring formed by two almost concentric boundaries (�g. 1.b). The shapeof the outer boundary is nearly a circle in all the slices (i.e.for all values of z), and remainslike that all through the heart cycle (i.e.for di�erent times t in our 4D space). The shapeof the inner boundary varies with time. For approximately half of the images the shape iscircular and for the other half the uctuations could be regarded as moderate deformationsof a circle.Since MRI provides high contrast between blood and tissue, the inner boundary of themyocardium can be preserved and emphasized with the part of the di�usion equation thatuses the norm of the gradient of the intensity function, but the outer boundary tends to bedi�used and therefore joint with regions outside the myocardium.For these reasons we introduce the weighting factorsWxx andWyy which acting togetherpenalize di�usion on the x-y plane, in the radial direction of an \imaginary" polar coordinate



system whose origin is located at the centre of the circle that best �ts the outer boundary ofthe myocardium. In this manner we avoid blurring the outside boundaries of the myocardiumand the regions of the inner boundary which are aligned with circles centred at the originof such polar coordinate system (�g. 1.b).Finding the location of the centre of such family of circles can be done immediately byinspection, or can be done automatically with a simple algorithm based on the Hough [11]transform. In any case the method described is very robust to small errors in the location ofthis centre, provided it is inside of both boundaries (a condition that can be easily satis�ed).For this reason we use the same coordinates of the centre for all images (i.e.for all planesand times), overriding the small variations of 1 or 2 pixels found when computing thecentre in various sample images, and therefore making the weighting functions Wxx(x; y)and Wyy(x; y) independent of the coordinates z; t (we must remember that, for example, 10slices and 16 phases would require the process of �nding the coordinates for 160 images).The analytical expressions for these weights and the ones we will describe in the text below(with some minor modi�cations explained at the end of this section) are shown in the nextsection (eqs. 14-18).Although cylindrical coordinates (r,�,z) would seem a natural choice for developing theequations, the data is given in cartesian coordinates (x,y,z) and we would require inter-polation to convert from one system to another. Since the interpolation could introduceunwanted blurring, we prefer to write the equations directly in cartesian coordinates.In the third spatial direction, z, we also have a-priori information that can be used toimprove the di�usion process. The LV wall bends along the z axis direction which is alignedwith the long axis of the ventricle. In the regions of z where the bending is maximum, thecorrelation between pixels that form part of the myocardium in adjacent slices along z issmaller than in regions where the bending is almost non existent, i.e.where the myocardiumlies straight. We can imagine this in the following manner: consider the pixels correspondingto the myocardium in the out-most region of the x-y plane where the bend of the LV wallalong the z axis is maximum (see �g. 1.c). Neighbouring pixels in the z direction, i.e.inthe adjacent x-y slices, probably do not belong to the myocardium but to a di�erent kindof tissue and therefore they should be excluded from the di�usion process. On the otherhand, x-y slices where the bend of the LV wall along the z axis is minimum should havehigh weights correlating pixels adjacent in the z direction.The weight function Wzz(z) is then determined so that it �ts the expected correlationbetween contiguous x-y slices of the 4-dimensional data. We �nd that a sinusoidal functioncan approximately describe this correlation when �xing the frequency and phase parametersof the function according to the data (this was done using long axis LV images).Temporal informationAs for the 4th dimension, the time axis t, we can also correlate data with di�erent weightsusing information about the behaviour of the heart during the heart cycle, speci�cally, usingthe fact that the LV contracts (and expands) at very di�erent speeds during the cycle. Theimmediate consequence of this is that data obtained at times when the contraction rate ismaximum is not very correlated with data adjacent in the t axis (the data gathered shortlybefore and afterwards in the cine sequence). On the contrary, data obtained when the heartis almost static should be strongly correlated in the time axis. This phenomena can beviewed as non-homogeneous data sampling.As a �rst approximation to the speed vs. time relationship we generate the weight func-tion Wtt(t) using a sinusoidal function that approximately describes the desired correlationbetween successive data.



These are the elements of the diagonal function matrix W(p). Although the curvatureof the LV wall along the z axis is not very high | and therefore the weights Wzz are fairlysimilar along the z axis, we employ sin and cos weight functions in the 4 coordinate axes'directions. In this manner we provide the knowledge based model with symmetry that sim-pli�es the mathematical treatment. Furthermore, without loosing the main characteristicsof the weighting functions, we use square sin and cos functions that simplify the computa-tion of constants used to preserve the total ux of brightness of the 4D image (like that ofeq. 19). We use adiabatic boundary conditions in the 4 coordinate axes, i.e.the conductancefunction is set to zero in the boundaries of the 4-dimensional \image". The equations forthe weight functions described here are shown in the next section.4 Discrete SchemeEquation 5 can be discretised on a hyper-cubic lattice (similar to a square one but in 4Drather than 2D), where the data value is associated with the vertices, and conduction coe�-cients with the arcs. Using a 4D extension of the 4-nearest-neighbours discretisation used byPerona and Malik [4], we work on 8-non-diagonal-nearest-neighbours to obtain the followingscheme:F� (p)j�=i+1p=po = F� (p)j�=ip=po + � 0@ Xd2fE;W;N;S;U;D;A;BgCd(p;F) ���dF� (p) 1A�������=ip=po (10)Note that these are in fact 4 coupled equations since F! Fn where n 2 f�; Vx; Vy; Vzg.These computations are carried out for every point of coordinates po = (xo; yo; zo; to) in thewhole of the data's domain. The new value of F (the di�used data) is calculated at everyiteration step (� = i) from the previous stage of the data (� = i � 1). Since the matrix Cis diagonal, we simplify the nomenclature by introducing the direction index d. Then, thesummation takes place over all the 8 neighbours' directions, namely: E;W (east and weston the x axis), N;S (north and south on the y axis), U;D (up and down on the z axis), andA;B (after and before on the t axis). The following de�nitions hold for the present scheme:����dF� (p)�����=ip=po = F� (p)j�=ip=po+dpd � F� (p)j�=ip=po (11)where dpd = ( �Ed � �Wd; �Nd � �Sd; �Ud � �Dd; �Ad � �Bd ) and � is the Kronecker's deltade�ned as �ij = � 1 if i = j0 if i 6= j . The conductance function is computed asCd(p;F� ) = W d(p) gd (krF� (p)k�d) (12)where gd is that of equation 8, and equation 9 becomeskrF� (p)k�d =  Xn �sn�dF �n (p)�2! 12 ; (13)for all d 2 fE;W;N; S; U;D;A;Bg and n 2 f�; Vx; Vy; Vzg. �d is de�ned for the singlevalued functions Fn in a fashion similar to that of it's vector homologous of equation 11. Inthis notation, the weights functions can be expressed asW d(p) = W dxx(x; y) + W dyy(x; y) + W dzz(z) + W dtt(t) (14)



where W dxx(x; y) = (�Ed + �Wd) sin2(�(x; y)) (15)W dyy(x; y) = (�Nd + �Sd) cos2(�(x; y)) (16)W dzz(z) = (�Ud + �Dd) sin2�!z(z + 12(�Ud � �Dd)) + �z� (17)W dtt(t) = (�Ad + �Bd) sin2�!t(t+ 12(�Ad � �Bd)) + �t� : (18)The angle �(x; y) = arctan ((y � yorigin)=(x� xorigin)) is that de�ned by the virtual polarcoordinate system whose origin is located at (xorigin; yorigin). The constants !z; !t; �z; �tare the frequencies and phases described in relation toW and used to �t the weight functionsto the data sets. The constant � of equation 10 used for keeping the model numerically stableis computed using the average values �wd of the weightsW d over their entire range of values:� = 1Pd2fE;W;N;S;U;D;A;Bg �wd � 18 � 12 = 14 : (19)5 Results and DiscussionAs we mentioned before, there are two main reasons for using di�usion on images. If thepurpose of the di�usion process is to remove noise from the data and preserve details ofthe data, for instance when using velocity data to extract dynamical information [12, 13],then the total di�usion time must be small. However, when the purpose of the di�usionis to pre-segment the images, a much longer time is suitable. In either case the number ofiterations of the process can be set interactively by inspection of the results or estimatingthe noise or data correlation. For example, Canny's algorithm will gradually halt the processby decreasing the value of km.Some preliminary results are shown in �gure 2 where we apply di�erent types of anisotropicdi�usion on MR data of the myocardium. The same di�usion times were used to produceall images. The original density image is shown in �gure 2.a. Figure 2.b shows the result ofthe anisotropic di�usion process using standard Perona and Malik 2-dimensional anisotropicdi�usion. Knowledge-based multi-feature anisotropic di�usion results are shown for 2- and4-dimensional data in �gures 2.c and 2.d respectively. Although standard anisotropic di�u-sion preserves and sharpen some edges, it can make disappear some others (�g. 2.b). Fromthe above mentioned di�usion processes, only those shown in �gures 2.c and 2.d preserve theleft side of the external boundary, the gap near to the bottom left corner, and the structureof the papillary muscles (the 2 protuberances of the inner boundary).Figures 3.a-c compare the magnitude of gradient of the original with the di�used imagesalong the horizontal line at the centre of the images. In these pro�les we can see that theleft external boundary, which appears as the leftmost protuberance, is preserved only in theproposed di�usion schemes. We must notice that this is not a consequence of shorter e�ectivedi�usion times of the weighted schemes in relation to standard anisotropic di�usion. Thecoe�cients � for each di�usion scheme compensate for the schemes' di�erent number of pixelneighbours and knowledge based weights which inuence the total ux of brightness. Ourexperiments have veri�ed this and showed that for standard anisotropic di�usion, shorterdi�usion times in which important boundaries are preserved, are not long enough to smoothhomogeneous regions and sharpen prominent edges.In �gure 3.c we can also appreciate how the second peak from the right has been de-tected but shifted from the original image. This highlights the use of multi-feature and



Figure 2: Preliminary results on a density MR image of the myocardium: (a) original image,(b) standard 2D Anisotropic Di�usion (AD), (c) knowledge-based multi-feature 2D AD, (d)knowledge-based multi-feature 4D AD.4-dimensional information that helps to locate a feature landmark using information thatcan not be seen in the image (since it belongs to other contiguous images). We must re-member that we are working with a 4-dimensional \body" and we can only visualize 2Dimages.Two fundamental aspects of this model are introduced by making C a matrix and anexplicit function of the position, and not only of the gradient. First, an explicit functionof the position can treat the space as heterogeneous and therefore incorporate the anyavailable knowledge about the system (forcing the di�usion to be zero at the boundaries, asmost models do, is already an example of an inhomogeneous space). Secondly, making C amatrix we allow the model to bias di�erent directions in the coordinates' space, making theconductance truly anisotropic and permitting the use of known symmetries to improve theresults of the di�usion.We are currently comparing our method with other geometry driven di�usion schemes [8][14]. However, at present it appears that these methods are not well suited for multi-valuedimages like those described here. Although in this work we make little use of the dynamicalinformation provided by the velocity data, at present we are trying to incorporate thisknowledge into the di�usion process. Our results will be extended in a forthcoming paper.References[1] B.M. ter Haar Romeny (Ed.). Geometry-Driven Di�usion in Computer Vision. ComputationalImaging and Vision. Kluwer Academic Publishers, 1994.[2] J. J. Koenderink. The structure of images. Biological Cybernetics, 50:363{370, 1984.[3] A. Witkin. Scale{space �ltering. In Int. Joint Conf. on Artif. Intell., pages 1019{1022, 1983.[4] P. Perona and J. Malik. Scale{space and edge detection using anisotropic di�usion. IEEETransactions on Pattern Analysis and Machine Intelligence, 12(7):629{639, July 1990.[5] L. Alvarez, P. L. Lions, and J. M. Morel. Image selective smoothing and edge detection bynonlinear di�usion II. SIAM Journal of Numerical Analysis, 29(3):845{866, June 1992.[6] R. T. Whitaker. Geometry{limited di�usion in the characterization of geometric patches inimages. CVGIP: Image Understanding, 57(1):111{120, January 1993.[7] G. Gerig, O. K�ubler, R. Kikinis, and F. A. Jolesz. Nonlinear anisotropic �ltering of MRI data.IEEE Transactions on Medical Imaging, 11(2), 221-231 1992.



Figure 3: Black curves are the pro�les of the magnitude of the gradients on a horizontalline at the centre of the di�used images of �gure 2: (a) standard 2D AD (�g. 2.b), (b)knowledge-based multi-feature 2D AD (�g. 2.c), (c) knowledge-based multi-feature 4D AD(�g. 2.d). The grey curve in all plots correspond to the pro�le of the magnitude of thegradient of the original image (�g. 2.a). Notice that the proposed di�usion schemes (shownin (b) and (c)) have successfully preserved the left external boundary that appears as theleftmost protuberance of the black curves. Notice also that the shift of some peaks in (c)is not an error: the 4D method locates the boundaries by using information belonging tocontiguous images that are not shown in the �gures.[8] G.Z. Yang, P. Burger, D.N. Firmin, and S.R. Underwood. Structure Adaptive AnisotropicFiltering for Magnetic Resonance Image Enhancement. In Computer Analysis of Images andPatterns (CAIP), Prague, 1995.[9] J. Canny. A computational approach to edge detection. IEEE Transactions on Pattern Analysisand Machine Intelligence, 8(6):679{698, 1987.[10] R. Whitaker and G. Gerig. Vector-valued di�usion. In B.M. ter Haar Romeny (Ed.) [1],chapter 4, pages 93{134.[11] D.H. Ballard. Generalizing the Hough transform to detect arbitrary shapes. Pattern Recogni-tion, 13(2):111{122, 1981.[12] G.I. Sanchez-Ortiz and P. Burger. Vector Field Analysis of the Dynamics of the Heart us-ing Velocity Encoded NMR Images. In 9th International Symposium on Computer AssistedRadiology, CAR'95, pages 228{233, Berlin, June 21-24 1995. Springer Verlag.[13] D. Rueckert, G. I. Sanchez-Ortiz, and P. Burger. Motion and Deformation Analysis of the My-ocardium Using Density and Velocity Encoded MR Images. In 10th International Symposiumon Computer Assisted Radiology, CAR'96, pages 125{130, Paris, June 26-29 1996.[14] W.J. Niessen, B.M. ter Haar Romeny, L.M.J. Florack, and M.A. Viergever. A general frame-work for geometry-driven di�usion equations. Int. J. of Computer Vision, pages 1{21, 1995.


