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Abstract

When a Bayesian approach is used for feature matching, the method
relies on the ability to specify reasonable error distributions for the
input data. Although in practice the precise form of the distribution
is not needed, the method becomes more reliable the more closely the
true distribution shape is followed.

In this paper we show how error covariances can be propagated
through a relatively complex set of calculations to generate an im-
proved set of covariance matrices for the matching algorithm. We
demonstrate the technique with an application in which 2D features
are derived from a perspective projection of a 3D CAD model consist-
ing of cylinders. The errors created by uncertainty in the projection
parameters are propagated through the projection process to create the
covariance matrices for the relations between the feature pairs required
by the matching algorithm.

Introduction

This paper describes an extension to the work in [1], in which the authors de-
scribe a feature labelling algorithm based on probabilistic reasoning. The method
was used to identify the correspondence between features extracted from a 2-
dimensional image and those from a corresponding 2-dimensional model. This
work was extended in [2] to show how estimates of the feature measurement errors
can be naturally incorporated into the labelling process. In this paper we extend
this approach to show how errors from a common source further back in a complex
processing chain can be propagated through into the matching process. We use
this technique to establish correspondences between features from a 2D image and
components from a 3D CAD model, in order to determine the pose of the camera
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with respect to some 3D object that the CAD model describes, for the case in
which some (inexact) estimate of the camera pose is available.

The method described in [1] uses relations between pairs of features in both
image and model to encapsulate the structural arrangement of the features. By
using pairs of features, correspondences can be found in situations in which the
unknown transformation between image and model is Euclidean. The complexity
of this algorithm is then O(L?), where L is the total number of labellings con-
sidered. In the worst case, L is the product of the image and model feature set
sizes. Ideally we would like to extend this method to find correspondences directly
between 2D image features and 3D model components. Assuming that such a
correspondence exists, then in order to generate a complete set of quantities that
are invariant to the projection of the model onto the image, it would be necessary
to use higher-order combinations of features. Given that the complexity of the
existing 2D-t0-2D method can already be problematic for sets of more than a few
dozen features, it seemed worthwhile to explore other approaches.

In many practical applications there is some inaccurate initial estimate avail-
able of the pose of the camera relative to some 3D object for which a model exists,
for example when the camera is moving relative to the object. This initial pose
estimate is used to project the model onto the image plane, so that a 2D-to-2D
match can be made using the existing labelling algorithm. The labelling results
are then used to compute a more accurate camera pose. Initial attempts to do this,
using the unmodified algorithm of [1], were partially successful. The difficulty was
that the correct covariance matrices for the individual distributions of the feature
relations varied considerably, depending in particular on the orientation of the
relevant model features relative to the camera. In practice compromise values for
these covariances had to be found by trial and error.

To circumvent these problems, in this paper we describe a method in which
the error variances of the camera pose estimate are propagated right through to
the generation of the feature relations, and hence to the compatibility coefficients
(see [1]) of the labelling process. This permits the generation of individual covari-
ance matrices for the relation distributions that accurately reflect the influence of
the camera pose errors (modified by the projection process). There still remains
the problem of estimating variances for the camera pose parameters. However the
method proves to be relatively insensitive to these, because it is the relative size
of the relation distributions that is important rather than their absolute size.

In the next section we briefly summarise the matching algorithm, after which
we describe the error propagation method. In the following section we describe an
application in which the matching algorithm is used as a component of a larger
process. Here the task is to determine the pose of a camera in relation to a physical
model of an oil rig jacket composed of cylinders. We then examine the sensitivity
of the matching process to the variance estimates of the camera pose parameters.

2 Summary of the matching algorithm

We can very briefly summarise the algorithm described in [1] as follows. There are
N image features, or objects, {O;, i € 1...N}. There are M + 1 model features,
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Figure 1: The three types of relation that were used

or labels, {wy, a € 0...M}. The label wy denotes a null label that is used when
no physical label is appropriate. A labelling of O; with w, is denoted by O; ¢ wq.

Feature measurements that can be directly compared between image and model
are attributes of the features; the set of attributes for image feature O; is denoted
by a;, and that for model feature w, by A, . Since the attributes are in general not
sufficient to specify the geometric structure of the feature sets, relations between
pairs of features are also used. The set of relations between the image features O;
and O; is denoted by r;;, and that between model features w, and wg by Rag.
Three types of relations are used; these are illustrated as p, ¢ and ¢ in Fig 1.

The “correct” label for an object O; is ascertained by evaluating the labelling
probabilities conditional on the data, Pr(O; + w,la,r), of each label w, for that
object. The conditional labelling probabilities are expanded using Bayes’s rule
together with some simplifying assumptions. The resulting expression is then used
in a relaxation process that iteratively updates these probabilities to generate a
more consistent labelling. Assuming a set of initial probabilities Pr™M are provided,
this relaxation process can be expressed as:

Iterate fromn =1 {
Vi Va |
QM0 w,) =
p(a;]| O;wy) H ZPr(”) (Ojwg) p(rij]| Oi+wqa,Ojwp)
Vi#i VB
Pr™ (0; ¢ ws) QM (0;wa)

Pr(n+1) Oi¢wy) =
( ) D Pr (0 wy) QM (0;+wy)
YA

}

On convergence, the largest labelling probability for each object is selected.
The important quantities as far as the present discussion is concerned are the
relation p.d.fs, p(ry | O;+wq, Ojwg) (and, to a lesser extent, the attribute
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p.d.f.s p(a;| O;+w,)). In practice we consider them to be normally distributed,
although the error analysis in the following section does not require this assump-
tion. Thus the relation p.d.f. can be written as:

p(rij | (’),»(—wa,Oj(—wg) = N.- (RQB,E“)

ij
i.e. a normal distribution for the random vector r;;, with mean R, and covariance
matrix X*. It is the evaluation of this covariance matrix that is particularly of
interest; we discuss how it might be done in the following section.

3 Error propagation

Consider a set of measurements, each of which is subject to some error, that
form a vector of random variables x. The errors of the components may not be
independent; we therefore define a covariance matrix ¥* for the measurements.
Now consider a second set of random variables forming a vector y, that are a
(vector) function of the first set:

y =f(x)

We can define a similar covariance matrix Y for the vector y. If the function f is
everywhere differentiable and the covariances ¥* are sufficiently small that f may
be considered locally linear, then the covariances are related by:

Ey — nyTEXny
where J*Y is the Jacobian matrix whose element in the kth row and /th column
is given by:
_of
8$k

Several such functions can be concatenated — thus for a third set of values, z =
g (y), we could write:

IV

w7 o= Ty
(JXnyZ)TExJXnyZ

We can apply the above technique to the evaluation of the relation covariance
matrices discussed in the previous section. The ultimate source of the errors in the
relations is in the initial estimate of the camera pose parameters. There are two
stages to the generation of the relations and their covariances: the projection pro-
cess, and the generation of the model relations from the projected measurements.
In the first stage, the set of initial pose parameters p are used to project the CAD
components onto the image plane. If a CAD component is denoted by some set
of (known) parameters X, and a corresponding projected 2D model feature by a
set of measurements X, the projection of the component can be represented by a
vector function f:

X =1(¥,p)
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Since the pose parameters p contain errors, they are regarded here as a set of
random variables, while the CAD measurements X are assumed to be correct.
Thus there is associated with the parameters a covariance matrix ¥P; consequently
the projected measurements X have associated covariances X, and JPX is the
corresponding Jacobian matrix:

wX = jpXTyp pX

Note that JPX (and hence ©X) is also a function of X, and will therefore vary
from feature to feature.

In the second stage, from each pair of projected features, X, and X3 say, the
measurements are used to generate a set of relations R,g between the features.
Thus we need the covariance matrix XX=Xs for a pair of projected features:

EXQXB — [JpXQ | JPXB]T EP [JPXQ | JPX@]

where the notation [a|b] denotes the (horizontal) concatenation of the matrices
a and b into a single matrix. We can then calculate X*, the covariances for the
relations:

JXrTEXaxB JXr
([7P%e | JPXe] 70T P 79X | JoXo] 7%

El‘

where JX* is the Jacobian matrix relating the relation errors to the errors in the
pair of features w, and wg.

A similar (but simpler) analysis can be made to derive covariance matrices for
the attributes.

The alert reader will have noticed that, in the previous section, we regarded the
image relations as the random variables, with means given by the corresponding
model relations; on the other hand the analysis of this section treats the model
relations as if they were the random variables. This apparent discrepancy can be
resolved by assuming that we are working in the space of the true projection rather
than that of the erroneous projection.

If the errors due to the extraction of the edge line segments from the image are
significant, a separate covariance matrix can be composed to reflect this, following
the method described in [2]; the two matrices are then combined by summing
them.

4 An application

To demonstrate the method, we used the matcher in an application in which the
CAD model was of part of an oil rig jacket. The assumption is that, in real life, a
camera is mounted on an autonomous submarine, the objective being to find where
the submarine is in relation to the oil rig (i.e. in effect to find the camera pose).
In practice we made use of a physical scale model of the oil rig, in a laboratory.
The components of the model are cylinders, represented by the 3D positions
of their endpoints together with the cylinder radius. The corresponding projected
feature is a directed line segment representing an edge of the cylinder, represented
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in turn by the 2D endpoint positions in the image plane. The tolerances of the
CAD model were not given, and so the model itself was assumed to be accurate.

The image depicts a node of the structure, i.e. a point on the structure where
several cylinders meet. A rough estimate of the camera pose for the image was
given, together with a very approximate estimate of the likely magnitude of the
pose errors.

The results of the experiment are shown in Fig. 2. The cylinder edges are
extracted from the image and fitted to straight line segments, shown in white in
Fig. 2(a). The projection of the CAD model is shown superimposed (in black)
on the image, using the initial (erroneous) camera pose parameters. Because
of the mismatch in image and model segment lengths, they are both chopped
into smaller segments, of length roughly corresponding to the projected cylinder
diameter (which in turn can be estimated from the initial pose parameters). The
matcher is then used to find correspondences between the image and projected
model segments. From the match, a more accurate pose is computed, using an
iterative algorithm based on [5, 6]. The CAD model is then re-projected onto the
image (Fig. 2(b)). A flow diagram for the entire pose estimation process is shown
in Fig. 3.

(a) initial projection (b) final projection

Figure 2: Example of pose estimation

Another example, using a different node on the structure, is shown in Figs. 4.
This node is on a corner of the structure, and several of the cylinders are hidden
by the main upright member, as can be seen in the projected model overlay. The
image contains some additional clutter (some pipes mounted on the laboratory
wall); however this clutter, although detected by the edge finder, was rejected by
the matcher, so that the correct final pose was still obtained.
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Figure 3: Flowchart for pose estimation process

(a) initial projection

(b) final projection

Figure 4: Additional example using corner node
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5 Parameter sensitivity

The only parameters required by the matcher that are not specified by the theory
are the components of the covariance matrix for the pose parameter errors. There
are 6 pose parameters — 3 angles for the orientation and 3 position parameters. We
assumed that the errors are all independent; thus 6 variances have to be specified,
using some prior knowledge about the likely accuracy of the initial camera pose
estimate.

We tested the sensitivity of the matching algorithm to the values of these
variances. We used the image in Fig. 2 for these tests, with the same initial pose
estimate. There were 6 line segment features extracted from the scene, and 20 from
the projected model (longer segments being subdivided, as discussed earlier). We
assumed that the line segments were fitted to the image edges with a standard
deviation of 1 pixel.

In order to reduce the dimensionality of the parameter space that is to be
investigated, the orientation errors were all assumed to have the same standard
deviation, oy; similarly the position errors have a single standard deviation o.
Note that, to give an indication of the scale of o,, the cylinders in Fig. 2 have
diameters in the range 33-48 mm. The results, for various combinations of these
two values, are shown in Table 1, in which:

v/ A tick indicates that all image features were correctly matched, leading to a
good fit of the re-projected model onto the image (as in Fig 2(b)).

? A question mark indicates that one or more of the image features were la-
belled with the null (i.e. “don’t know”) label. The pose estimator fitted the
remaining segments well, but the pose estimate itself was in some cases less
reliable.

x A cross indicates that one or more features were incorrectly matched, thus
supplying the pose estimator with incorrect information, causing the wrong
pose to be found. This could in principle be detected by measuring the
magnitude of the residual error of the pose estimation. In each example
of this last category, the lower edge of the left-hand diagonal member was
incorrectly labelled as the lower edge of the horizontal member.
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Table 1: Sensitivity of matcher to pose error standard deviations
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The interpretation that we drew from these results is as follows. A relation p.d.f.
value, or “compatibility coefficient” (c.f. [3, 4]), represents the degree of compat-
ibility between a pair of image features and a pair of model features. Because
of the assumption that the error propagation is linear, the width of the relation
p.d.f. will be directly proportional to the pose error standard deviations. If these
standard deviations are set too small, resulting in a very narrow relation p.d.f.,
then mismatches between image and model relations will often cause the p.d.f. to
be evaluated somewhere far along its tail, resulting in a very low value for the
compatibility coefficient. Since p.d.f.s involving the null label have a constant
value, the null label will then be preferred. If on the other hand the pose error
standard deviations are set too high, the relation p.d.f. will be very wide, and with
correspondingly low amplitude. In this case, two things can happen. Because the
p.d.f.s are so wide they will overlap to a large extent, so that support for a la-
belling can easily be given by the wrong relation. Also, because of the reduced
p.d.f. amplitude, even though the p.d.f. is likely to be evaluated near its centre, its
amplitude can still be less than that of the null p.d.f., giving preferential support
to the null label.

We see however that both parameters can be varied over about an order of
magnitude, while still obtaining good results. This is in marked contrast to a pre-
vious version of this application that used a constant, diagonal covariance matrix
(as recommended in [1]); in that case a suitable combination of covariance values
was found with difficulty, by trial and error.

In the example used here there were relatively few image features, so that
if one or two were null-labelled this sometimes caused a noticeable degradation
in the performance of the following pose estimation stage. In many applications
there will be rather more image features, in which case a few null labellings will
matter rather less. Incorrect labellings, on the other hand, are likely to create
a more serious problem. Thus it would seem preferable to underestimate rather
than overestimate the pose error standard deviations.

6 Conclusions

In [1] a method for matching 2D geometrical features was described, using prob-
abilistic relaxation. The method hinges on the evaluation of probability density
functions for relations between pairs of features. However it was not clear how the
form of the density functions should be determined, and in particular the method
assumed that the same form could be used for all relations. In [2] the authors used
an improved error model to show the deficiencies of this assumption. However the
latter method still assumed that all the feature measurement errors were inde-
pendent. In this paper we indicate how to proceed in cases for which the feature
measurement errors are not independent, but are in turn a result of some common
source of errors — which in the application discussed here are the errors in the
camera pose estimate.

We demonstrated the technique on an application that simulates an underwater
navigation task in the vicinity of an oil rig. A 3D CAD model of the oil rig was
used consisting of a set of cylinders, together with images of a scale model of the oil
rig. The CAD model was projected onto the images using some initial erroneous
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estimate of the camera pose. The projected model was then matched with the
image features, and the results used to compute more accurately the camera pose.
Estimates of the likely magnitude of the pose errors (in the form of their variances)
were propagated through the projection process to create more reliable covariance
matrices for the feature relations in the matching algorithm. Experiments showed
that the method was tolerant to a reasonably wide spread of pose error estimates,
and that intuitively reasonable values could be used for these estimates.

In order to apply the method to a real underwater navigation task, further
study of the feature extraction process would be needed, since the visibility would
be much worse than in the laboratory. There are two different lighting conditions
that have to be considered. When operating near the surface in conditions of
relatively good visibility, without artificial lighting, the oil rig will appear as a
silhouette. In this case the method described is appropriate, although the signal-to-
noise ratio will be much worse. When artificial lighting is used, typically mounted
on the vehicle near the camera, the situation is altered. The actual outline of the
cylinder is unlikely to be easily visible; instead, a reflection of the vehicle lights in
the cylinders will be picked up, leading to an overestimate of the distance of the
vehicle from the structure.
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