
Error propagation for 2D{to{3Dmatching with application to underwaternavigationW.J. Christmas, J. Kittler and M. PetrouVision, Speech and Signal Processing GroupDepartment of Electronic and Electrical EngineeringUniversity of Surreyemail: w.christmas,j.kittler,m.petrou@ee.surrey.ac.ukhttp://www.ee.surrey.ac.uk/AbstractWhen a Bayesian approach is used for feature matching, the methodrelies on the ability to specify reasonable error distributions for theinput data. Although in practice the precise form of the distributionis not needed, the method becomes more reliable the more closely thetrue distribution shape is followed.In this paper we show how error covariances can be propagatedthrough a relatively complex set of calculations to generate an im-proved set of covariance matrices for the matching algorithm. Wedemonstrate the technique with an application in which 2D featuresare derived from a perspective projection of a 3D CAD model consist-ing of cylinders. The errors created by uncertainty in the projectionparameters are propagated through the projection process to create thecovariance matrices for the relations between the feature pairs requiredby the matching algorithm.1 IntroductionThis paper describes an extension to the work in [1], in which the authors de-scribe a feature labelling algorithm based on probabilistic reasoning. The methodwas used to identify the correspondence between features extracted from a 2-dimensional image and those from a corresponding 2-dimensional model. Thiswork was extended in [2] to show how estimates of the feature measurement errorscan be naturally incorporated into the labelling process. In this paper we extendthis approach to show how errors from a common source further back in a complexprocessing chain can be propagated through into the matching process. We usethis technique to establish correspondences between features from a 2D image andcomponents from a 3D CAD model, in order to determine the pose of the camera
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with respect to some 3D object that the CAD model describes, for the case inwhich some (inexact) estimate of the camera pose is available.The method described in [1] uses relations between pairs of features in bothimage and model to encapsulate the structural arrangement of the features. Byusing pairs of features, correspondences can be found in situations in which theunknown transformation between image and model is Euclidean. The complexityof this algorithm is then O(L2), where L is the total number of labellings con-sidered. In the worst case, L is the product of the image and model feature setsizes. Ideally we would like to extend this method to �nd correspondences directlybetween 2D image features and 3D model components. Assuming that such acorrespondence exists, then in order to generate a complete set of quantities thatare invariant to the projection of the model onto the image, it would be necessaryto use higher-order combinations of features. Given that the complexity of theexisting 2D-to-2D method can already be problematic for sets of more than a fewdozen features, it seemed worthwhile to explore other approaches.In many practical applications there is some inaccurate initial estimate avail-able of the pose of the camera relative to some 3D object for which a model exists,for example when the camera is moving relative to the object. This initial poseestimate is used to project the model onto the image plane, so that a 2D-to-2Dmatch can be made using the existing labelling algorithm. The labelling resultsare then used to compute a more accurate camera pose. Initial attempts to do this,using the unmodi�ed algorithm of [1], were partially successful. The di�culty wasthat the correct covariance matrices for the individual distributions of the featurerelations varied considerably, depending in particular on the orientation of therelevant model features relative to the camera. In practice compromise values forthese covariances had to be found by trial and error.To circumvent these problems, in this paper we describe a method in whichthe error variances of the camera pose estimate are propagated right through tothe generation of the feature relations, and hence to the compatibility coe�cients(see [1]) of the labelling process. This permits the generation of individual covari-ance matrices for the relation distributions that accurately reect the inuence ofthe camera pose errors (modi�ed by the projection process). There still remainsthe problem of estimating variances for the camera pose parameters. However themethod proves to be relatively insensitive to these, because it is the relative sizeof the relation distributions that is important rather than their absolute size.In the next section we briey summarise the matching algorithm, after whichwe describe the error propagation method. In the following section we describe anapplication in which the matching algorithm is used as a component of a largerprocess. Here the task is to determine the pose of a camera in relation to a physicalmodel of an oil rig jacket composed of cylinders. We then examine the sensitivityof the matching process to the variance estimates of the camera pose parameters.2 Summary of the matching algorithmWe can very briey summarise the algorithm described in [1] as follows. There areN image features, or objects, fOi; i 2 1 : : :Ng. There are M + 1 model features,
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iFigure 1: The three types of relation that were usedor labels, f!�; � 2 0 : : :Mg. The label !0 denotes a null label that is used whenno physical label is appropriate. A labelling of Oi with !� is denoted by Oi !�.Feature measurements that can be directly compared between image and modelare attributes of the features; the set of attributes for image feature Oi is denotedby ai, and that for model feature !� byA�. Since the attributes are in general notsu�cient to specify the geometric structure of the feature sets, relations betweenpairs of features are also used. The set of relations between the image features Oiand Oj is denoted by rij , and that between model features !� and !� by R�� .Three types of relations are used; these are illustrated as �, � and  in Fig 1.The \correct" label for an object Oi is ascertained by evaluating the labellingprobabilities conditional on the data, Pr(Oi !�ja; r), of each label !� for thatobject. The conditional labelling probabilities are expanded using Bayes's ruletogether with some simplifying assumptions. The resulting expression is then usedin a relaxation process that iteratively updates these probabilities to generate amore consistent labelling. Assuming a set of initial probabilities Pr(1) are provided,this relaxation process can be expressed as:Iterate from n = 1 f8i 8� fQ(n)(Oi !�) =p (ai j Oi !�) Y8j 6=iX8� Pr(n) (Oj !�) p (rij j Oi !�;Oj !�)Pr(n+1) (Oi !�) = Pr(n) (Oi !�) Q(n) (Oi !�)X8� Pr(n) (Oi !�) Q(n) (Oi !�)ggOn convergence, the largest labelling probability for each object is selected.The important quantities as far as the present discussion is concerned are therelation p.d.f.s, p (rij j Oi !�;Oj !�) (and, to a lesser extent, the attribute



British Machine Vision Conference
p.d.f.s p (ai j Oi !�)). In practice we consider them to be normally distributed,although the error analysis in the following section does not require this assump-tion. Thus the relation p.d.f. can be written as:p (rij j Oi !�;Oj !�) = Nrij (R�� ;�r)i.e. a normal distribution for the random vector rij , with meanR�� and covariancematrix �r. It is the evaluation of this covariance matrix that is particularly ofinterest; we discuss how it might be done in the following section.3 Error propagationConsider a set of measurements, each of which is subject to some error, thatform a vector of random variables x. The errors of the components may not beindependent; we therefore de�ne a covariance matrix �x for the measurements.Now consider a second set of random variables forming a vector y, that are a(vector) function of the �rst set: y = f (x)We can de�ne a similar covariance matrix �y for the vector y. If the function f iseverywhere di�erentiable and the covariances �x are su�ciently small that f maybe considered locally linear, then the covariances are related by:�y = JxyT�xJxywhere Jxy is the Jacobian matrix whose element in the kth row and lth columnis given by: Jxykl = @fl@xkSeveral such functions can be concatenated | thus for a third set of values, z =g (y), we could write: �z = JyzT�yJyz= (JxyJyz)T�xJxyJyzWe can apply the above technique to the evaluation of the relation covariancematrices discussed in the previous section. The ultimate source of the errors in therelations is in the initial estimate of the camera pose parameters. There are twostages to the generation of the relations and their covariances: the projection pro-cess, and the generation of the model relations from the projected measurements.In the �rst stage, the set of initial pose parameters p are used to project the CADcomponents onto the image plane. If a CAD component is denoted by some setof (known) parameters X , and a corresponding projected 2D model feature by aset of measurements X, the projection of the component can be represented by avector function f : X = f (X ;p)
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Since the pose parameters p contain errors, they are regarded here as a set ofrandom variables, while the CAD measurements X are assumed to be correct.Thus there is associated with the parameters a covariance matrix �p; consequentlythe projected measurements X have associated covariances �X, and JpX is thecorresponding Jacobian matrix:�X = JpXT�pJpXNote that JpX (and hence �X) is also a function of X , and will therefore varyfrom feature to feature.In the second stage, from each pair of projected features, X� and X� say, themeasurements are used to generate a set of relations R�� between the features.Thus we need the covariance matrix �X�X� for a pair of projected features:�X�X� = �JpX� j JpX��T �p �JpX� j JpX��where the notation [ajb] denotes the (horizontal) concatenation of the matricesa and b into a single matrix. We can then calculate �r, the covariances for therelations: �r = JXrT�X�X�JXr= ��JpX� j JpX�� JXr�T �p �JpX� j JpX��JXrwhere JXr is the Jacobian matrix relating the relation errors to the errors in thepair of features !� and !�.A similar (but simpler) analysis can be made to derive covariance matrices forthe attributes.The alert reader will have noticed that, in the previous section, we regarded theimage relations as the random variables, with means given by the correspondingmodel relations; on the other hand the analysis of this section treats the modelrelations as if they were the random variables. This apparent discrepancy can beresolved by assuming that we are working in the space of the true projection ratherthan that of the erroneous projection.If the errors due to the extraction of the edge line segments from the image aresigni�cant, a separate covariance matrix can be composed to reect this, followingthe method described in [2]; the two matrices are then combined by summingthem.4 An applicationTo demonstrate the method, we used the matcher in an application in which theCAD model was of part of an oil rig jacket. The assumption is that, in real life, acamera is mounted on an autonomous submarine, the objective being to �nd wherethe submarine is in relation to the oil rig (i.e. in e�ect to �nd the camera pose).In practice we made use of a physical scale model of the oil rig, in a laboratory.The components of the model are cylinders, represented by the 3D positionsof their endpoints together with the cylinder radius. The corresponding projectedfeature is a directed line segment representing an edge of the cylinder, represented
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in turn by the 2D endpoint positions in the image plane. The tolerances of theCAD model were not given, and so the model itself was assumed to be accurate.The image depicts a node of the structure, i.e. a point on the structure whereseveral cylinders meet. A rough estimate of the camera pose for the image wasgiven, together with a very approximate estimate of the likely magnitude of thepose errors.The results of the experiment are shown in Fig. 2. The cylinder edges areextracted from the image and �tted to straight line segments, shown in white inFig. 2(a). The projection of the CAD model is shown superimposed (in black)on the image, using the initial (erroneous) camera pose parameters. Becauseof the mismatch in image and model segment lengths, they are both choppedinto smaller segments, of length roughly corresponding to the projected cylinderdiameter (which in turn can be estimated from the initial pose parameters). Thematcher is then used to �nd correspondences between the image and projectedmodel segments. From the match, a more accurate pose is computed, using aniterative algorithm based on [5, 6]. The CAD model is then re-projected onto theimage (Fig. 2(b)). A ow diagram for the entire pose estimation process is shownin Fig. 3.

(a) initial projection (b) �nal projectionFigure 2: Example of pose estimationAnother example, using a di�erent node on the structure, is shown in Figs. 4.This node is on a corner of the structure, and several of the cylinders are hiddenby the main upright member, as can be seen in the projected model overlay. Theimage contains some additional clutter (some pipes mounted on the laboratorywall); however this clutter, although detected by the edge �nder, was rejected bythe matcher, so that the correct �nal pose was still obtained.
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Figure 3: Flowchart for pose estimation process

(a) initial projection (b) �nal projectionFigure 4: Additional example using corner node
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5 Parameter sensitivityThe only parameters required by the matcher that are not speci�ed by the theoryare the components of the covariance matrix for the pose parameter errors. Thereare 6 pose parameters| 3 angles for the orientation and 3 position parameters. Weassumed that the errors are all independent; thus 6 variances have to be speci�ed,using some prior knowledge about the likely accuracy of the initial camera poseestimate.We tested the sensitivity of the matching algorithm to the values of thesevariances. We used the image in Fig. 2 for these tests, with the same initial poseestimate. There were 6 line segment features extracted from the scene, and 20 fromthe projected model (longer segments being subdivided, as discussed earlier). Weassumed that the line segments were �tted to the image edges with a standarddeviation of 1 pixel.In order to reduce the dimensionality of the parameter space that is to beinvestigated, the orientation errors were all assumed to have the same standarddeviation, ��; similarly the position errors have a single standard deviation �p.Note that, to give an indication of the scale of �p, the cylinders in Fig. 2 havediameters in the range 33{48 mm. The results, for various combinations of thesetwo values, are shown in Table 1, in which:p A tick indicates that all image features were correctly matched, leading to agood �t of the re-projected model onto the image (as in Fig 2(b)).? A question mark indicates that one or more of the image features were la-belled with the null (i.e. \don't know") label. The pose estimator �tted theremaining segments well, but the pose estimate itself was in some cases lessreliable.� A cross indicates that one or more features were incorrectly matched, thussupplying the pose estimator with incorrect information, causing the wrongpose to be found. This could in principle be detected by measuring themagnitude of the residual error of the pose estimation. In each exampleof this last category, the lower edge of the left-hand diagonal member wasincorrectly labelled as the lower edge of the horizontal member.��(�) � 0:2 0.5 1 2 � 5�p (mm) � 1 ? ? ? ? ?2 ? p ? ? ?5 p p p ? ?10 p p p ? ?20 p p p � ?50 � � � p ?� 100 ? ? ? ? ?Table 1: Sensitivity of matcher to pose error standard deviations
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The interpretation that we drew from these results is as follows. A relation p.d.f.value, or \compatibility coe�cient" (c.f. [3, 4]), represents the degree of compat-ibility between a pair of image features and a pair of model features. Becauseof the assumption that the error propagation is linear, the width of the relationp.d.f. will be directly proportional to the pose error standard deviations. If thesestandard deviations are set too small, resulting in a very narrow relation p.d.f.,then mismatches between image and model relations will often cause the p.d.f. tobe evaluated somewhere far along its tail, resulting in a very low value for thecompatibility coe�cient. Since p.d.f.s involving the null label have a constantvalue, the null label will then be preferred. If on the other hand the pose errorstandard deviations are set too high, the relation p.d.f. will be very wide, and withcorrespondingly low amplitude. In this case, two things can happen. Because thep.d.f.s are so wide they will overlap to a large extent, so that support for a la-belling can easily be given by the wrong relation. Also, because of the reducedp.d.f. amplitude, even though the p.d.f. is likely to be evaluated near its centre, itsamplitude can still be less than that of the null p.d.f., giving preferential supportto the null label.We see however that both parameters can be varied over about an order ofmagnitude, while still obtaining good results. This is in marked contrast to a pre-vious version of this application that used a constant, diagonal covariance matrix(as recommended in [1]); in that case a suitable combination of covariance valueswas found with di�culty, by trial and error.In the example used here there were relatively few image features, so thatif one or two were null-labelled this sometimes caused a noticeable degradationin the performance of the following pose estimation stage. In many applicationsthere will be rather more image features, in which case a few null labellings willmatter rather less. Incorrect labellings, on the other hand, are likely to createa more serious problem. Thus it would seem preferable to underestimate ratherthan overestimate the pose error standard deviations.6 ConclusionsIn [1] a method for matching 2D geometrical features was described, using prob-abilistic relaxation. The method hinges on the evaluation of probability densityfunctions for relations between pairs of features. However it was not clear how theform of the density functions should be determined, and in particular the methodassumed that the same form could be used for all relations. In [2] the authors usedan improved error model to show the de�ciencies of this assumption. However thelatter method still assumed that all the feature measurement errors were inde-pendent. In this paper we indicate how to proceed in cases for which the featuremeasurement errors are not independent, but are in turn a result of some commonsource of errors | which in the application discussed here are the errors in thecamera pose estimate.We demonstrated the technique on an application that simulates an underwaternavigation task in the vicinity of an oil rig. A 3D CAD model of the oil rig wasused consisting of a set of cylinders, together with images of a scale model of the oilrig. The CAD model was projected onto the images using some initial erroneous
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estimate of the camera pose. The projected model was then matched with theimage features, and the results used to compute more accurately the camera pose.Estimates of the likely magnitude of the pose errors (in the form of their variances)were propagated through the projection process to create more reliable covariancematrices for the feature relations in the matching algorithm. Experiments showedthat the method was tolerant to a reasonably wide spread of pose error estimates,and that intuitively reasonable values could be used for these estimates.In order to apply the method to a real underwater navigation task, furtherstudy of the feature extraction process would be needed, since the visibility wouldbe much worse than in the laboratory. There are two di�erent lighting conditionsthat have to be considered. When operating near the surface in conditions ofrelatively good visibility, without arti�cial lighting, the oil rig will appear as asilhouette. In this case the method described is appropriate, although the signal-to-noise ratio will be much worse. When arti�cial lighting is used, typically mountedon the vehicle near the camera, the situation is altered. The actual outline of thecylinder is unlikely to be easily visible; instead, a reection of the vehicle lights inthe cylinders will be picked up, leading to an overestimate of the distance of thevehicle from the structure.References[1] W.J. Christmas, J. Kittler, and M. Petrou. Matching in computer vision usingprobabilistic relaxation. IEEE Trans. Pattern Analysis and Machine Intelli-gence, 17(8):749{764, August 1995.[2] W.J. Christmas, J. Kittler, and M. Petrou. Modelling compatibility coe�cientdistributions for probabilistic feature-labelling schemes. In D. Pycock, editor,Proceedings of the Sixth British Machine Vision Conference, volume 2, pages603{612, Birmingham, U.K, 1995.[3] R.A. Hummel and S.W. Zucker. On the foundations of relaxation labelingprocesses. IEEE Trans. Pattern Analysis and Machine Intelligence, 5(3):267{286, May 1983.[4] A. Rosenfeld, R. Hummel, and S. Zucker. Scene labeling by relaxation opera-tions. IEEE Trans. Systems, Man, and Cybernetics, 6:420{433, June 1976.[5] R.Y. Tsai. A versatile camera calibration technique for high-accuracy 3D ma-chine vision metrology using o�-the-shelf TV cameras and lenses. IEEE Journalof Robotics and Automation, 3:323{344, 1987.[6] R.Y. Tsai and R.K. Lenz. A new technique for fully autonomous and e�-cient 3D robotics hand/eye calibration. IEEE Transactions on Robotics andAutomation, 5:345{358, 1989.


