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Abstract

This paper describes two projects applying computer vision to In-
telligent Vehicle Highway Systems. The first project has resulted in
the development of a system for monitoring traffic scenes using video
information. The objective is to estimate traffic parameters such as
flow rates, speeds and link travel times, as well as to detect quickly
disruptive incidents such as stalled vehicles and accidents. The second
project is aimed at cevelcping vision as a sensor technology for vehicle
control. The novel feature of this project, compared to most previ-
ous approaches, is the extensive use of binocular stereopsis. First, it
provides information for obstacle detection, grouping, and range esti-
mation which is directly used for longitudinal control. Secondly, the
obstacle—ground separation enables robust localization of partially oc-
cluded lane boundaries as well as the dynamic update of camera rig
parameters to deal with vibrations and vertical road curvature.

1 Introduction

Traffic congestion is a serious problem in industrialized societies. In the state
of California in the US, congestion is projected to triple by 2005 with expected
peak hour freeway speeds dropping to 11 mph. Congestion and safety are related:
accident rates increase under congestion and half of all congestion is caused by
accidents and other incidents.

Obviously, this problem has to be attacked on multiple fronts. This paper
concentrates on two areas where computer vision technology can help significantly.

In the short run, traffic surveillance using video cameras could be substantially
automated. Some of the major uses of such a data collection system would be

e Fast incident detection without human monitoring of multiple video signals.

e Estimation of travel times between various points. This could be used in
conjunction with variable message signs for flow control.

e Detailed traffic condition information for public use.

Unlike conventional loop detectors, which are buried underneath highways to
count vehicles, video monitoring systems are less disruptive and less costly to
install. They also have greater range and allow for more detailed descriptions
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of traffic situations. In this paper, we describe a prototype robust, vision-based
traffic surveillance system [16, 17].

In the long run, platooning has considerable promise as a way of increasing
freeway capacity without building new lanes. A number of different system ar-
chitectures are being studied, but common to all of them is the idea that vehicle
control would be at least partially automated to permit vehicles to be driven safely
with small inter-vehicle distances. That necessitates sensing of the car’s position
with respect to the lane markers and other vehicles. While a variety of different
sensing modalities including laser range finders, radar or magnetic sensors could be
used for this purpose, computer vision offers some advantages. It has a large field
of view, is passive, and is rather well adapted to the current traffic infrastructure
which was designed from the point of human drivers using vision.

Prominent work in this area is due to Dickmanns and collaborators[5] in Ger-
many and Pomerleau and collaborators[22] at CMU. Our approach [18] at UC
Berkeley, 1s distinctive in making considerable use of binocular stereopsis.

2 Traffic surveillance using video information
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Figure 1: Our system concept for video traffic surveillance.

Our system concept is illustrated in Figure 1. The core idea is to have video
cameras mounted on poles or other tall structures looking down at the traffic
scene. Video is captured, digitized, and processed by onsite computers, and then
transmitted in summary form to a Traffic Management Center (TMC) for collation
and computation of multi-site statistics such as link travel times. Processing occurs
in four stages:

1. Optical-flow segmentation (very slow traffic) or background image differenc-
ing (normal traffic conditions) to detect and group blobs corresponding to
individual vehicles as they come into the field of view. At this stage, a
bounding box can be fitted to the blob to estimate shape parameters for
vehicle classification.

2. Tracking each individual vehicle to refine and update its position and velocity
in 3D world coordinates, as well as the shape parameters, until it leaves the
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tracking zone.

3. Reasoning from the track data in order to infer local traffic flow parame-
ters including vehicle counts per lane, average speeds, incidents, lane change
frequencies, etc. These parameters, together with track information (times-
tamp, vehicle type, color, shape, X-Y position), are communicated to the
TMC at regular intervals.

4. At the TMC, local traffic parameters from each site are collated and displayed
as desired, and/or used in controlling signals, message displays, and other
traffic control devices. In the case of incidents, the TMC can also request
transmission of stored images from the incident site. Computers at the TMC
also process the track information from neighboring camera sites to compute
long-distance parameters such as link times and origin—destination counts.

Commercial video-based traffic surveillance systems have aimed for simple tech-
niques for measuring traffic flow that could be implemented in real time. For
instance, the first generation of systems such as the Autoscope[21] attempted to
count numbers of vehicles crossing a row of pixels by looking for the associated
temporal change in brightness values. Such systems can be easily fooled e.g. by
shadows linking cars across lanes. The next generation of commercial systems
are based on tracking ideas. Model-based vehicle tracking systems have previ-
ously been investigated by several research groups, the most prominent being the
groups at Karlsruhe [14, 15] and at the University of Reading[1, 24]. The emphasis
is on recovering trajectories and models with high accuracy for a small number of
vehicles.

The challenges of designing video traffic surveillance systems are that of identi-
fying vehicles despite imprecise video data and changing lighting conditions, track-
ing individual vehicles despite their overlapping with one another, and efficiently
providing high-level descriptions based on evidence accumulated over time. The
major tradeoff in the design of such a system, indeed of most realtime computer
vision or image processing systems, is the tradeoff between robustness/accuracy
and speed. More sophisticated, robust algorithms require more computation; how-
ever they will continue to operate in conditions such as shadows, dense traffic, and
day-to-night transitions when the naive algorithms will fail.

After three years of this research, we have largely succeeded in this goal [9,
16, 17]. We have a prototype system that operates at 15 frames per second in
detecting and tracking vehicles in a wide variety of traffic, weather, and lighting
conditions. From the frack information, the system computes individual and av-
erage vehicle speeds, lane flow rates, lane change counts. Other parameters such
as headways and queue lengths are easily obtained from track information. The
system also currently detects stalled vehicles (correctly distinguishing them from
vehicles stopped in traffic). Some results are shown in Figures 2 and 3.

3 Surveillance system modules

Our traffic surveillance system is based on the block diagram shown in Figure 4.



Figure 2: Highway scene (I-580 in Richmond, CA) showing tracking information for the car
outlined. The bar at the top shows the vehicle's speed. The arrow at top is the lane change
indicator. The indicator at top right is green to show that the vehicle is operating normally (i.e.,
not stalled).
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Figure 3: Computed bird’s-eye view of road segment shown in Fig. 2 with tracks overlaid.
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Figure 4: Block diagram of the complete traffic surveillance system.

The analysis generally proceeds from low-level processing of road traffic images
to high-level descriptions of the traffic situation. The following three phases can
be identified:

1. Image processing to detect vehicles as they enter the scene, and to estimate
shape parameters.

2. Tracking each individual vehicle to estimate its position and velocity. Rea-
soning from the track data in order to infer local traffic parameters.

3. At the TMC: Collation of local parameters and computation of long-distance
parameters from multi-camera track data.

3.1 Vehicle detection, track and shape initialization

A surveillance system initiates vehicle identification and tracking by determining
what parts of each image belong to moving objects and what parts belong to
the background. In normal traffic, this is accomplished by examining the differ-
ence in pixel intensities between each new frame and an estimate of the stationary
background. Reliable background estimation, which is critical for accurate identifi-
cation of moving “blobs”, is made more difficult as lighting conditions change. We
perform this initialization step by using a Kalman filter-based adaptive background
model[10, 12]. This allows the background estimate to evolve as the weather and
time of day affect lighting conditions.

The regions of the images identified as not being part of the background and
not currently being tracked are used to initialize new tracks. To form a new track,
the motion of the vehicle must be initialized. The motion of the region between
two frames forms the initial velocity estimate. Shape parameters for the vehicle
are also initialized at this point. This is performed by using the bounding outline
of the moving region to form an initial estimate of vehicle shape.

Shadows (especially long shadows at dawn and dusk) are a significant problem
for vision-based systems. We have derived a new method for shadow removal. The
core idea is that the boundary of a car is defined both as a brightness boundary
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and as a texture boundary. While the brightness boundary separating a car from
its shadow may be difficult to detect, the texture boundary serves as a robust
separator and can be calculated efficiently.

The image-differencing approach has been shown to work extremely well with
normal traffic flows. With very slow-moving and stop-and-go traffic, however,
the background model will begin to average in the cars themselves as a signifi-
cant component of the intensity. Fortunately, these conditions are exactly those
suited for optical flow calculations, because objects do not move very many pixels
between frames. The track initialization and shape information from either image-
differencing or optical-flow methods can be used equally well in the tracking phase.

After identifying moving blobs, the vision system attempts to disambiguate
individual vehicles and estimate their shapes. This helps with associating data
over a sequence of images and with obtaining accurate vehicle trajectories. Our
system performs these tasks by developing a correlation mask over time. This
mask conforms to the estimated appearance of the vehicle in the image.

3.2 Robust multiple vehicle tracking

Two primary factors that complicate this task are noisy measurements and vehicle
occlusions, which make it more difficult to identify and disambiguate vehicles.

To address the problem of noisy measurements, we employ the Kalman filter[7]
formalism to provide most likely estimates of the state of a vehicle, X, = (z,y,2,9)
based on accumulated observations. The tracking is performed in a world coor-
dinate system. This is accomplished by projecting the points on the image onto
the road plane. Since the road can be assumed flat for the range of the image,
this transformation only requires a simple linear transformation in homogeneous
coordinates. The advantage of tracking in world coordinates is that physical con-
straints of a vehicles motion model can be used to guide tracking. For example,
the knowledge that vehicles have finite acceleration will limit the range of motion
a vehicle can have in the image from frame to frame.

At each time frame we measure the position of the center of the vehicle in the
image. This position is translated into world coordinates and used as our state
measurement, Z;. The measurement noise is found by taking the known measure-
ment variance in image coordinates and transforming it into world coordinates. In
this way we can use the fact that as a vehicle becomes more distant, its apparent
size becomes smaller and the uncertainty in its position increases. This fact is
often not used in systems which track purely in image coordinates.

Because vehicles often overlap with each other in the road images, the extracted
contours of vehicles will become distorted for some frames. This can cause artificial
shifts in vehicle trajectories, since tracks are obtained by connecting centers of
contours along the image sequence. To avoid these artificial shifts and to obtain
reasonable tracks, we employ an explicit occlusion reasoning algorithm, which
compensates for overlapping vehicles. The basic idea is to exploit the known
traffic scene geometry and the fact that motion is assumed to be constrained to
the ground plane [16]. This knowledge makes it possible to determine a depth
ordering among the objects in the scene, and this depth ordering defines the order
in which objects are able to occlude each other(see Fig. 5).
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Figure 5: Vehicle occlusion can be predicted from the depth ordering of vehicles. Information
in the occluded region must be extrapolated for the more distant vehicle. The figure on the right

contains a partially occluded vehicle.

The tracking process provides the instantaneous positions and velocities of all
tracked vehicles. This information can be used to computer the local traffic param-
eters, such as flow rate, average vehicle speed, lane changes, queue length, average
spatial headway etc. This summary information can then be communicated, say
every 1 second, to the Traffic Management Center.

3.3 Information processing at the TMC

We are currently implementing vehicle handoff between consecutive cameras, using
track-matching, so that a single vehicle can be tracked over a long distance. With
this information, link travel times and origin—destination counts can be computed
for roads covered by overlapping or nearly-overlapping fields of view. We have
also demonstrated the computation of bounding boxes to give basic size and shape
information for individual vehicles. Shape and color information can then be used
to assist in long-distance tracking of vehicles through non-contiguous surveillance
regions (which we expect to be the norm except in critical regions of the freeway
network). The most promising technique here seems to be matching of within-lane
vehicle classification sequences.

For incident detection, we have demonstrated the use of probabilistic reasoning
techniques based on the formalism of dynamic belief networks. Details may be
found in [9, 17].

We’ll now move on to describe the second project.

4 Stereo-based approach to vehicle control

We have developed a system([18] for vision based longitudinal and lateral vehi-
cle control which makes extensive use of binocular stereopsis. Previous work on
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autonomous vehicle guidance by Dickmanns’s group[5] and Pomerleau[22] has con-
centrated mostly on road following. In crowded traffic scenes, the presence of other
vehicles causes two problems. First, they are potential obstacles, which are to be
detected. This problem has been addressed using optical flow interpretation [6],
stereopsis [26, 20], or a combination of both [3]. These approaches are often com-
putationally expensive. Dickmanns and collaborators have used approaches based
on finding symmetric objects which are computationally less expensive, but are
not likely to be as general or robust. In addition to being potential obstacles,
vehicles can also occlude significant fragments of lane markers, causing problems
for algorithms that do not explicitly take occlusion into account.

The idea behind our approach is to build a reliable and efficient system by
exploiting a number of geometric constraints which arise from the configuration of
our stereo rig, and from the fact that the road can be modeled locally as a plane.
These geometric constraints are detailed in Sec. 5.

At each new instant, we first compute the stereo disparity using an efficient
algorithm based on the Helmholtz shear. The disparity map is used in two ways.
First, a 3D obstacle map is dynamically updated over time by tracking identified
vehicles and introducing new vehicles which appear. (Sec. 6). This provides the
information needed for longitudinal control, ie measuring the distances to lead-
ing vehicles. Second, the areas of the image belonging to the ground plane are
identified. This ensures that the search area for lane markers (which is defined
using the parametric description of the lane markers which was found at the pre-
vious instant) is not corrupted by occlusions. Within this area, the lane markers
are localized by a specialized feature detector. From the image positions of the
lane markers, we can update the geometric parameters of the stereo rig. The new
parameters will be used to compute the stereo disparity at the next instant, and
to map the lane markers to the ground plane, where a parametric description is
obtained for them. This parametric description provides the information needed
for lateral control, ie maintaining a constant distance to the road boundary. The
flow of information that we just described is summarized in Fig. 6.

For more details on our approach, please see [18].

5 The geometrical model

5.1 A stereo rig viewing a plane

In our application, the vision system consists of a binocular stereo rig. The road
surface plays an important role, since it contains the lane markers to be tracked
for lateral control, and since every object which lies above it is to be considered
as a potential obstacle. Our key assumption is that this surface can be locally
modeled as a plane.

The camera is modeled as a pinhole camera using the projective linear model.
There is a one-to-one correspondence between the image plane R, and a given
plane I, and this correspondence is given by the homography:

m; = HpMp

where m; (resp Myy) are the projective coordinates of a point of Ry (resp II). In
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Figure 6: Block diagram of the stereo-based vehicle control system. Arrows indicate flow of

information.

the case of two cameras, we see that the two images m; and m, of a point Mp
on a given plane II are related by the homographic relation:

my = ngml

It is known that the expression for the general homography is:
Hi;=A'(R+ %TnT)A-l (1)

In this expression, A (resp A') is the matrix of intrinsic parameters of the first
(resp. second) camera. The motion parameters R and T describe the displacement
between the two cameras. The equation of plane IT is n”7M = d, where n is the
unit normal vector of the plane and d the distance of the plane to the origin.

5.2 The Helmholtz shear

In a particular case, this relation reduces to what we call the Helmholtz shear, a
configuration where the process of computing the stereo disparity is tremendously
simplified. We have chosen this term to acknowledge the fact that this insight is
due to Helmholtz [8] more than a hundred years ago. He observed that objectively
vertical lines in the left and the right view perceptually appear slightly rotated.
This led him to the hypothesis that the human brain performs a shear of the retinal
images in order to map the ground plane to zero disparity. Then, any object above
the ground plane will have non-zero disparity. This is very convenient because the
human visual system is most sensitive around the operating point of zero disparity.

In the most general situations where the Helmholtz shear applies, the correspon-
dence between two views of a point of the road plane can therefore be described
by the relation:

W =u+hpv+h
{»y";v 1 13 )
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From this expression, and comparing with Eqn 1, one can show that the cor-
respondence Hjs is a Helmholtz shear, if and only if: the intrinsic parameters A
and A’ are the same, the rotation R is the identity, the translation T has only a
component along the X-axis, and the component of the normal n along the X-axis
is zero.

In such a situation, the stereo rig is entirely characterized by the intrinsic
parameters of the first camera A, and the baseline b. The position of the plane
with respect to the stereo rig can be described by two parameters (that we will
call the geometric parameters), for instance:

e the height of the stereo rig with respect to the road plane d
¢ the angle of tilt of the stereo rig with respect to the road plane a

They are related to the coefficients of the Helmholtz shear by:

hio = b/dsina 3
hiz =b/dcosa (3)

Ideas related to the Helmholtz shear have been used previously for obstacle
detection by mobile robots [19, 26].

6 Dynamic Stereopsis

The oft-quoted criticism of stereopsis for use in vehicle navigation is that it is com-
putationally very expensive. We are able to reduce the complexity considerably
by using region-of-interest processing and exploitation of domain constraints.

The process of computing the stereo disparity is tremendously simplified by
using the Helmholtz shear described in Sec. 5. After applying this transformation to
the image, obstacles get mapped to points of non-zero disparity, making them very
easy to detect. The disparity is found by computing the normalized correlation
between small horizontal windows in the two images at the locations of the points-
of-interest. Residual disparities — which appear in the image after the ground
plane disparity has been mapped to zero — indicate objects which appear above
the ground plane. A simple threshold is used to distinguish between features lying
on the ground plane (e.g. lane markers or other stuff painted on the road) and
features due to objects lying above the ground plane (which may become future
obstacles). Figure 7 shows the result on a single frame.

Computing depth from just a pair of images is known to be sensitive to noise.
One can improve the accuracy of the depth estimation by exploiting the temporal
integration of information using the expected dynamics of the scene via Kalman
filters. Objects of interest will be assumed to be either other vehicles on the road
or stationary objects connected to the road plane. In addition we can exploit
the physical constraints of the environment. We are interested in connected, rigid
objects. This allows us to use spatial coherence in identifying objects from the
depth map.

We utilize the spatial coherence of objects in order to segment the depth map
into objects of interest. First, connected components are found in a 3D space
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a) b)

Figure 7: a) left image and b) light indicates objects were detected to be on the road surface,
dark indicates objects are above the road surface, black indicates regions where the disparity

could not be accurately recovered.

consisting of the two image dimensions plus the depth dimension. In the two
image dimensions, points are connected if they are one of the 4 nearest neighbors.
In the depth dimension they are connected if the difference in depth is less than the
expected noise in the depth estimates. Figure 9 gives an example of two objects
which are connected in this image/depth 3D space.
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Figure 8: Connected components in image/depth space consist of those pixels which are nearest
neighbors in image coordinates as well as having depth differences less than depth uncertainty.

These connected components form the basis of potential objects which are to
be tracked with time. If the same object appears in two consecutive frames, we
can initialize a Kalman filter to track its position and velocity with respect to our
vehicle. Figure 9 shows the objects found by this method. Note the tendency of
the scheme to oversegment. This can happen when the connecting region between
two parts of an object lacks features of sufficient correlation strength.

7 Updating lateral position and stereo rig
parameters

For lateral control, the most crucial variables to be sensed are the position and
orientation of the vehicle relative to the lane markers. In addition to these param-
eters, sensing of road curvature is very useful as it facilitates a smoother trajectory.

A number of different approaches have been used for this problem([4, 11, 13, 5].
Our approach follows the spirit of [5] in using a parametrized curve model of the
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Figure 9: Objects identified as being in the same lanes of traffic as the test vehicle. On the right
side of the image is a bird’s-eye-view from above the road surface showing the relative position
of the tracked objects with respect to the test vehicle.

lane markers which is estimated and then dynamically updated. Details may be
found in [18]. The most significant difference is that we can use the results of the
obstacle detection stage to exclude features that might lie in the search window
(based on previous lane marker position), but belong to vehicles instead of to lane
markers. This prevents us from getting spurious fits in the presence of occlusion
of lane markers. We expect this to be particularly useful in congested scenes.

We also need to dynamically update the camera rig geometry with respect to
the road, characterized by the two parameters: inclination angle a and camera
height, h. These change due to car vibrations and change in vertical road curva-
ture. It is crucial to estimate these accurately, since it is known [4] that a small
difference in the assumed and actual camera tilt angle with respect to the ground
affects the 3D reconstruction significantly. Moreover, the operation of mapping
the ground plane disparity to zero is very sensitive to this parameter, as a small
error in the inclination angle will cause a significant error on the localization of
the ground plane.

To update the camera geometry relative to the ground plane, we use the follow-
ing simple heuristic: The points-of-interest which exhibit small residual disparities
are assumed to lie on the ground plane. We attribute the residual disparities not
to a global movement of the ground plane but instead to error in our estimate of
inclination angle o and height h. The idea then is to minimize with respect to a
and h the sum of squares of differences between these measured disparities and
the disparity under the ground plane assumption. The values of @ and h are con-
tinuously updated over time using a linear Kalman Filter based on the dynamics
of & and h. For example, the height h is modeled as a damped harmonic oscillator
driven by noise. This is a model consistent with the suspension system of the car.

There are essentially two origins for variations in o and h: a short term vari-
ation due to camera vibrations, which requires a large process noise, and a long
term variation caused by a change in the slope of the road, which can be captured
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using a small process noise. An example of the results obtained from a sequence
of 210 frames recorded during 7 seconds of freeway driving is shown in figure 10.

10015

8

Figure 10: Camera inclination angle and camera height estimated from ground plane disparities

for a freeway driving sequence.

8 Conclusion

This paper describes two projects applying computer vision to intelligent vehicle
highway systems. The first project has resulted in the development of a realtime
system for monitoring traffic scenes using video information. The second project
is developing a system for vision based longitudinal and lateral vehicle control.
The vision module provides the following information to be used by the vehicle
control system:

e detection of other vehicles and measurement of their distance,

e estimation of the flow of lane markers and of road curvature
The originality of our approach is in the extensive use of binocular stereopsis for
this purpose.
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