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Abstract

We present, a method for camera calibration and metric reconstruction
of the three-dimensional structure of scenes with several, possibly small
and nearly planar objects from one or more images. We formulate the
projection of object models explicitly according to the pin-hole camera
model in order to be able to estimate the pose parameters for all ob-
jects as well as relative poses and the focal lengths of the cameras. This
is accomplished by minimising a multivariate non-linear cost function.
The only information needed is simple geometric object models, the
correspondence between model and image features, and the correspon-
dence of objects in the images if more than one view of the scene is
used. Additionally, we present a new method for the projection of cir-
cles using projective invariants. Results using both simulated and real
images are presented.

keywords: Least-squares model fitting, model-based vision, 3-D reconstruction,
camera calibration, projective invariants.

1 Introduction

We present a method for camera calibration and metric reconstruction of the
three-dimensional structure of scenes with several, possibly small and nearly pla-
nar objects in one process. One or more images from uncalibrated cameras are
used. The only information needed is simple geometric models containing descrip-
tions of objects as a set of. vertices, edges, and circles, the correspondence between
model and image features, and - for more than one view of the scene - the corre-
spondence of objects in the images. Calibration is obtained by direct observation
of objects in the scene. Therefore, the method lends itself for on-line calibration of
an active vision system. No preceding calibration with a special calibration pattern

'This work has been supported by the German Research Foundation (DFG) in the project
SFB 360.
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is necessary and no mechanic or thermic influences resulting from different times
of exposure distort the reconstruction.
Our approach is inspired by model-based methods and approaches applying pro-
jective geometry. Model-based approaches as presented by [Lowe 91, Goldberg 93]
use three-dimensional models of single objects in one image to estimate the object's
pose relative to the camera. Special simplified partial derivatives which are difficult
to extend for more objects or additional images are used. Preceding camera cali-
bration is necessary if not enough significant model features are detectable in the
image or to stabilise the solution. [Mohr et al. 93, Boufama et al. 93, Faugeras 92]
use images from uncalibrated cameras and estimate a projective reconstruction
only from known point correspondences. Additional metric information is incor-
porated in a second step to derive a reconstruction in Euclidean space. Inaccuracies
due to noise or false matches introduced in the first step are difficult to correct
in the second step where information available from the 3-D scene is taken into
account.
[Crowley et al. 93] achieve robust results using the objects in the scene for camera
calibration. Their approach holds for single objects and shows how to calibrate
with a minimum number of model points.
In contrast to these approaches, we formulate the projection of the object models
to one or more images explicitly according to the pin-hole camera model in order
to be able to estimate the pose parameters for all objects and for all cameras
and the focal lengths of the cameras. Seemingly complicated projection functions
with complex partial derivatives have the advantage that a minimum number of
parameter values are to be estimated. E.g., three parameters determine a rotation
rather than the nine entries of a rotation matrix. Furthermore, geometric informa-
tion is explicitly captured without additional constraints. Our method holds for
any model feature, not only for points, and for any number of known objects and
images. Moreover, we present a new method for the projection of circles using pro-
jective invariants. A multivariate non-linear cost function measuring the deviation
of projected model features from detected image features is minimised simultane-
ously for all detected image features in all images using the Levenberg-Marquardt
method. Constraints such as planarity or location of features other than those
encoded in the object models can be incorporated easily.
Experimental results from both simulated and real images are presented and show
the robustness of our approach for nearly planar scenes with small objects.

2 Model-based 3-D Reconstruction and Camera
Parameter Estimation

Model-based 3-D reconstruction is a quantitative method to estimate simultane-
ously the best viewpoint of all cameras and the object pose parameters by fitting
the projection of a three-dimensional model to given two-dimensional features. The
model-fitting is accomplished by minimising a cost function measuring all differ-
ences between projected model features and detected image features as a function
of the objects' pose and the camera parameters. Common features in the scenes we
are dealing with are points and circles. The projection of circles results in ellipses.
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The projection of one object model depends on 7 • n parameters where n is the
number of used images. The seven parameters per view are the focal length, three
rotational, and three translational parameters.

Projection of model points

The projection of a model point is the transformation of the point1 xo from model
coordinates o to the camera coordinate system / and the subsequent projection
onto the image plane 6j. This can be expressed in homogeneous coordinates2 as

**, = Ko(*o) = S" 1 (Tb,i • T,, • *(*„)) (1)

( cos 0 cos 0 cos 6 sin <$> — sin # ^ * \ \
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$ is a function for the transformation from affine to homogeneous coordinates.
The projection of a model point in a second image plane br needs one additional
transformation T,i from the reference coordinate system which we place in the first
camera coordinate system I to the second camera coordinate system r,

*K = KO(XO) = *-1 (Tbrr • %l • Tlo • * (»„ ) ) . (2)

Projection of model circles

The perspective projection of circles which are planar figures can be understood as
a collineation in the projective plane IP2. The cross ratio is invariant under every
collineation (see [Semple fe Kneebone 52]). Let A,B,C, and D be four points in
a projective plane, no three of them being collinear and a pencil of lines passing
through these four points. P is the centre of the pencil. Its cross ratio A; is

AT1' R' D'
k = [PA, PB; PC, PD] = === • = , (3)1 J A'D' B'C K

with A', B', C, D' being the intersections of this pencil with some line not passing
through P.
The locus of the centres P of a pencil of lines passing through A, B,C, D hav-
ing a given cross ratio is a conic through A, B, C, D (Theorem of Chasles, see
[Semple & Kneebone 52, Mohr 93] and Fig. 1). Thus, a conic is uniquely defined
by four points and a cross ratio. Its quadratic form is

ax2 + 2bxy + cy2 + 2dx + '2ey + f = 0 (4)

and the coefficients are determined using

kLABLCD + (l-k)LACLBD = 0 (5)

'Vectors are written in small bold type characters.
2Homogeneous transformations are denoted by T with subscripts indicating destination and

source coordinate frame of the transformation.
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with Lu = (xi - x)(yi - yj) - (y/ - y) (*/ - xj); /, J 6 {A,B,C,D}
(ref. [Mohr 93]). To determine the cross ratio of a circle with radius r and the four
points (r, 0), (0, r), (—r, 0), and (0, - r ) we apply eq. (5) to the equation of a circle
-kr2x2 + (2kr2-4r2) xy-kr2y2 + kr4 = 0. This results in 2kr2-4r2 = 0 => Jt = 2.

Thus, the quadratic form of a pro-
jected model circle is easily com-
puted using four projected points
on the circle and the correspond-
ing cross ratio in eq. (5). This
method holds with little extension
for the projection of general el-
lipses, too.

Fig. 1: Cross ratio of a pencil of lines on a conic. The representation of an ellipse e
as centre point in, radii l\ and

I2, and orientation 9 is more convenient as the quadratic form and enables the
component-wise comparison with a detected image ellipse. This representation is
obtained from the quadratic form with

1 b c
d e

a b
d e

and 0 — — arctan
a — c

with 8 =
a b
b c (6)

Let Ai and A2 be the real solutions of the polynomial A2 — (o + c) • A + 8 = 0, then
the radii are

/1 = and with A =
a b d
b e e
d e f

(7)

The projection of a model circle to the first and to the second image plane are
denoted by

= vblO
*o) = rb {Tbli • Tio • rc(x0)),

{x0) = Tb (Tbrr • Tri • Tio • Tc{x0)).

(8)

(9)

An image ellipse xb is described by its centre point in, the radii l\ and /2 and its
orientation 6. The function realising the transformation (eq. (6) and eq. (7)) of the
projected model circle in homogeneous coordinates to the ellipse representation is
Tb. A model circle x0 is characterised by its centre point, the radius and a normal
vector in model coordinates o. The function Tc calculates the four points that
are projected and their cross ratio in homogeneous coordinates. This formulation
of the perspective projection of a model circle allows us to measure easily the
deviation of projected and detected ellipses comparing five parameters.

Model-fitting

The pose of an object is well estimated from the image data if the value of the
non-linear multivariate cost function

TV

t = l j
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is minimal. The cost function C measures the deviation of projected model features
xOt - these can be points or circles - from the corresponding image features. The
vector a contains all unknown parameters. B is the set of images of a scene. N
is the number of corresponding model and image feature pairs. Depending on
the feature, the vectors XbJt and x0> contain different representations and the
projection functions V\ 0 are the respective transformations. S is a covariance
matrix which is used to model the admissible tolerance with respect to deviation
from projected model to detected image features.

Camera Parameter Estimation

Classical camera calibration methods (e.g. [Tsai 85]) can not be performed on-line
as they demand a special calibration pattern. Depth estimation is then a two-step
process and it may lead to suboptimal solutions. We have explicitly modelled the
camera parameters in our projection functions and thus they are estimated using
the knowledge of the 3-D structure of the objects in the scene. We estimate the
external camera parameters and the focal length. The results show that principal
point and scale factors are stable enough for our off-the-shelf CCD cameras to
assume fixed values. The influence of lens distortion to the results of our approach
is quite small. We demonstrate this with simulated data in section 4. Nevertheless,
it is possible to model the estimation of lens distortion in a manner similar to that
of [Li 94].
[Tsai 85] shows that full camera calibration is possible with five coplanar refer-
ence points. A solution for calibration derived with four coplanar points is unique
because four coplanar points determine a collineation in a plane and any further
imaginary points in that plane as intersections of lines between lines through the
four points can be derived. Six non coplanar points determine a unique solution
as well (see [Yuan 89]).
Calibration is possible with one camera view. Taking a stereo image leads to much
more robust results. Furthermore, the pose of a circle with known radius can not
be computed uniquely from one view (see [Ma 93, Safaee-Rad et al. 92]). Taking
at least two images for reconstruction, the pose of a circle in space is, if the
focal lengths are known, uniquely defined up to the direction of its normal vector
(ref. [Dhome et al. 90]). The sign of the normal can be determined due to the
visibility of the projected ellipse. The focal lengths are determined with any non-
circular object in the scene with at least four visible coplanar model points.

3 Minimisation

The main problem of non-linear parameter estimation is to find a method which
guarantees convergence of the cost function (eq. 10) to a global minimum. The
minimisation using the Levenberg-Marquardt method (see [Press et al. 88]), which
is a combination of Newton's method and a gradient descent, converges to the
nearest local minimum. The global minimum is found with good initial parameter
values. However, we do not have initial parameter estimates. Thus, we divide the
global model fitting problem into three stages to step-wise enhance and monitor
the estimates of the parameters.
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The Jacobian matrix \dVl
b o(a, xOl)/da) is

essential prerequisite for the minimisation and it is
obtained by applying the generalised chain rule for
the concatenation of projection and feature repre-
sentation extraction. The partial derivatives are
computed using MAPLE3.
Stage I: In the first stage, the poses of all objects
are reconstructed individually, and separately for
each camera view. As few parameters are to be
estimated, the individual reconstructions are per-
formed very quickly; however the minimisations
have to be monitored in order not to let them
converge to false local minima because of inappro-
priate initial values. The initial value for the focal
length is chosen to be a commonly used length (e.g.
15mm). For the translation in z-direction we take
a typical object distance (e.g. 2m). The initial x-
and t/-translation parameter values are calculated
from the assumed focal length and z-translation,
tracing the view ray through an image point and
a model point. Rotation parameters can be set to
any values.

During minimisation the focal length is moni-
tored. If it leaves an admissible range (10-100mm
in our case), the object is rotated by negating
two rotational parameters and the minimisation is
restarted with the other parameters reset to their
original initial values. The cost function is also
monitored during minimisation. If the process con-
verges to a local minimum with inadmissibly high
costs, the z-translation parameter is modified ac-
cording to a predefined scheme. To improve the
speed of convergence, it is useful to additionally
adjust the x- and j/-translation parameters which
should be consistent with the current z-translation
and focal length.
This monitored Levenberg-Marquardt iteration is
stopped if either the change of the parameter es-
timates from one iteration step to the next is less
than a given threshold, or if the model fitting does not succeed, i.e. if a maximum
number of iterations is reached or if the same local minimum is found despite
modified parameter values.
Stage II: Applying this method to each detected object, we obtain several esti-
mates of the focal length for each camera and an estimate for the pose of each
object relative to each camera. For a given camera the median of all estimates of

Fig. 2: a) A scene and the re-
sult of its 3-D reconstruction b)
in a front and c) in a side view to
show the accuracy of the recon-
struction w.r.t. the planar sur-
face of the table.

3MAPLE V Release 3 © by Waterloo Maple Software and the University of Waterloo
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the focal length from stage I is fixed at this stage and it is used to reconstruct
the pose of each object in the scene. So in this stage, better initial estimates for
objects' poses are derived for each view of the scene.
Stage III: The median focal length and the resulting objects' poses of stage II
are used as initial values for global model fitting. It is possible to estimate the
relative pose between different cameras from the object correspondences. But,
we found out that the minimisation process is not sensitive to the initial values of
these parameters. Therefore, we take a rough estimation of commonly-used camera
positions. Monitoring of this global minimisation is not necessary because of the
good initial parameters values now available.

4 Experimental Results

Various experiments with the approach outlined in the preceding sections have
been performed using real images as well as synthetic data with simulated noise.
It is not possible for us to measure the exact distance between the cameras and the
scene and the exact focal lengths. We get results for the focal lengths which are very
similar to those of our implementation of the algorithm of [Tsai 85]. The results
of camera calibration and 3-D reconstruction are evaluated comparing measured
and reconstructed distances within the scene. Fig. 2 shows a scene and two views
of its reconstruction from a stereo image. The side view indicates the accuracy of
the reconstruction w.r.t. the planar surface of the table.

4.1 Accuracy of 3-D reconstruction

In order to measure accuracy in 3-D reconstruc-
tion we use a scene of objects with known relative
poses shown in Fig. 3. The pose of an object rela-
tive to another is uniquely determined by the dis-
tances between two points of the first object and
one point of the other object and the angle between
two surface normals. Table 1 shows the accuracy of
3-D reconstruction comparing reconstructed and
measured distances and angle differences between
the top surface normals of all objects. The objects
are taken from a children's toolkit and are im-
precisely manufactured, therefore inaccuracies of
measurements up to ± lmm can occur. Fig. 3: A scene with objects
The results reflect that the more features available with known relative poses,
for one object, the better the accuracy of the estimated pose. For the two holed
bars (object 1 and 2 in Fig. 3) the four vertices and three or seven model circles
are visible on the top surface. The estimated relative pose is very close to the
measured one. The ring (object 4) is reconstructed using only the detected ellipse
of the hole. The results show that for this object the largest errors occur.
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Object

1, 2
1, 3
1, 4
2, 1
2, 3
2, 4
3, 1
3, 2
3, 4
4, 1
4, 2
4, 3

2.7
3.6
1.4
2.7
3.5
2.4
3.6
3.5
4.6
1.4
2.4
4.6

do[mm]

293.5
351

111.7
293.5
191.2
198
351

191.2
306 3
111.7
198

306.3

A do [mm]
1.9
4.8
3.7
1.9
6.8
2.6
4.8
6.8
9.6
3.7
2.6
9.6

0.7
1.3
3.4
0.7
3.4
1.3
1.3
3 4
3

3.4
1.3
3

di[mm]

191.9
325.9

.
313.9
177.7

-
317.1
171.8

-
175.7
190.1
282.2

Adi[mm]
2.1
5

2
6.3

-
3.2
1.8
-

2.2
3.5
9.6

1.1
1.5
_

0.6
3.4
-
1
1
.

1 3
1.8
3.3

Table 1: Accuracy in 3-D reconstruction of the scene shown in Fig. 3. The table shows
the difference of the measured distance between the first point of the first object and
one point of the second object Arfo, the difference in distance between the second point
of the first object and the point of the second object Ar/i, and A<̂  which measures the
difference between the surface normals of the two objects.

4.2 Sensitivity to errors in image coordinates

Accuracy of feature detection and number of used features

The accuracy of 3-D reconstruction and camera calibration is mainly influenced
by the accuracy of image feature detection and the the number of features used
for reconstruction and calibration. This is shown using simulated data. Equally
distributed noise in the range of ±0.5 pixel is added to all projected model-features
of two three-holed bars (ex. Fig. 2) independently.
The reconstructed distance between the two bars is used to measure accuracy.
Fig. 4 shows the results of three different simulations with 1000 runs in each
simulation. The errors in the reconstruction from the simulated data seem quite
large. This is due to the small number of available features for calibration and
reconstruction, compared to usual calibration patterns, and because the added
noise is quite large.
Notice the different scaling of the histograms. Fig. 4a) shows the distribution of
the reconstructed distances using one image and four points for reconstruction.
The results improve if more features are used. Fig. 4b) shows the effect when four
points and three circles per object are used for reconstruction and calibration in
one image. The mean of the reconstructed distances is 172.5mm and the standard
deviation is 16.6. A simulation taking four objects with four points per object in
one image leads to similar results, /< = 173.1 and a = 23.3. This time a total of 16
features for four objects is used. This is worse than 14 features for two objects as
in Fig. 4b), and this is reflected by the results. The best results are achieved using
two views with the maximum number of features per object. The mean in Fig. 4c)
is very close to the true distance, and the standard deviation is a — 3.5.

Radial distortion

Another experiment with synthetic data shows the influence of radial distortion
to calibration and reconstruction. Radial distortion resulting in a maximum dis-
placement of Armax = 4.5 pixel at the corners of an image is added to a synthetic
image. This is a commonly occurring distortion. Table 2 shows a maximal dif-



175

N° of views
1
1
2
2

N° of objects
2
2
2
2

N° of features
2x4
2x7
2x4
2x7

1.7
0.9
0.7
0.5

Table 2: Influence of radial distortion to the accuracy of reconstruction and calibration,
Arm a l = 4.5 pixel.

ference between true and reconstructed object distance of 1.7%. The influence of
radial distortion becomes smaller if more features and more views of a scene are
used for reconstruction and calibration. [Weng et al. 92] report similar results.

5 Conclusion

reconstruction from one view
true distance between objects: 168.8mm
1. object: 4 points
2. object: 4 points
(1=178.6 a=38.3

reconstruction from one view
true distance between objects: 168.8mm
1. object: 4 points, 3 circles
2. object: 4 points, 3 circles
u=172.5 0=16.6

reconstruction from two views
true distance between objects:
168.8mm
1. object: 4 points, 3 circles
1 ~»--~ct: 4points, 3 circles

=168.9 0=3.5

Fig. 4: Sensitivity to errors in image
point coordinates using different num-
bers of model features.

A method for camera calibration and metric
3-D reconstruction from one or more uncali-
brated images is presented. To this end, sev-
eral objects of the scene in contrast to a spe-
cial calibration pattern are used. These ob-
jects are modelled as sets of vertices, edges,
and circles and the correspondence between
model and image features is exploited as
well as the correspondence of objects in dif-
ferent views of the scene. The projection of
features is modelled explicitly capturing the
geometric constraints given by a pin-hole
camera model resulting in a minimum num-
ber of parameters to be estimated. For the
perspective projection of model circles we
derive a new formulation using projective
invariants. This results in a simple method
for the comparison of a projected model cir-
cle with a detected image ellipse on the ba-
sis of five parameters. To minimise a suit-
able cost function we apply the Levenberg-
Marquardt method in a three-stage process,
monitoring the iteration in order to step-
wise gain good initial parameter estimates
for subsequent minimisations. The accuracy
of 3-D reconstruction is shown using real
images. The relative error of distance and
surface normal between objects in the scene
is in the range of few percents. Using simu-
lated data we show that the accuracy of the
results is mainly influenced by the accuracy
of image feature detection and the the num-
ber of features used, while radial distortion
shows little impact on the accuracy.
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Future work will concern two extensions of our approach. First, the method will
be extended to re-calibrate the camera(s) using image sequences. This will allow
us to iteratively enhance the estimates of the parameters and to support a vision
system with active camera(s). Furthermore, other types of features, like edges,
will be incorporated into model-fitting and minimisation in order to exploit more
information of the objects in the scene.
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